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Abstract—We propose an optical performance monitoring
technique for simultaneous monitoring of optical signal-to-noise
ratio (OSNR), chromatic dispersion (CD), and polarization-mode
dispersion (PMD) using an artificial neural network trained
with asynchronous amplitude histograms (AAHs). Simula-
tions are conducted to demonstrate the technique for both
40-Gb/s return-to-zero differential quadrature phase-shift keying
(RZ-DQPSK) and 40-Gb/s noneturn-to-zero 16 quadrature am-
plitude modulation (16-QAM) systems. The OSNR, CD, and
PMD monitoring range and root-mean-square (rms) errors are
10–30 and 0.43 dB, 0–400 and 9.82 ps/nm, and 0–10 and 0.92 ps,
respectively, for RZ-DQPSK systems. For 16-QAM system, the
monitoring range and rms errors are 10–30 and 0.2 dB, 0–400
and 9.66 ps/nm, and 0–30 and 0.65 ps for OSNR, CD, and PMD,
respectively. As the generation of AAH does not require any clock
or timing recovery, the proposed technique can serve as a low-cost
option to realize in-service multiparameter monitoring for the
next-generation transparent optical networks.

Index Terms—Amplitude histogram, artificial neural network
(ANN), asynchronous sampling, optical fiber communication, op-
tical performance monitoring (OPM).

I. INTRODUCTION

W ITH the increasing data capacity in optical trans-
mission systems, optical performance monitoring

(OPM) has become increasingly important to ensure robust
and high-quality system performance at all times. Moni-
toring techniques for channel impairments, including optical
signal-to-noise ratio (OSNR), chromatic dispersion (CD), and
polarization-mode dispersion (PMD) have been extensively
studied [1]. Recently, the use of an artificial neural network
(ANN) is proposed for simultaneous monitoring of various
channel impairments [2], [3]. In particular, parameters derived
from either eye diagrams [2] or asynchronous constellation
diagrams [3] are used as input to ANNs for training and testing.
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Simulation results verified that ANN is a powerful tool for
OPM. In [4], Anderson et al. demonstrate the use of using the
pattern recognition technique on delay-tap plots for CD and
PMD monitoring.

However, as the aforementioned ANN-based moni-
toring techniques require complicated circuitries for either
timing/clock recovery or balanced detection, they are not ideal
candidates as monitoring units, especially at intermediate nodes
of the transmission link where cost is a major constraint. In this
letter, we propose the use of ANN trained with asynchronous
amplitude histograms (AAHs) for OSNR, CD, and PMD moni-
toring. As the received signal is asynchronously sampled, there
is no need for clock or timing recovery and the technique is
thus low cost. In addition, input parameters for ANN training
derived from eye diagrams or asynchronous constellation
diagrams [2], [3] such as -factor may not be well-defined or
even exist for higher order modulation formats. On the other
hand, the use of whole AAH as input to the ANN will be
applicable to all modulation formats. Simulation results for
both 40-Gb/s return-to-zero differential quadrature phase-shift
keying (RZ-DQPSK) and nonreturn-to-zero 16 quadrature
amplitude modulation (NRZ-16-QAM) signals demonstrate
wide dynamic ranges and high accuracies for simultaneous
OSNR, CD, and PMD monitoring that is comparable to other
ANN-based techniques [2], [3] and is not achievable by mon-
itoring techniques using AAH alone [5].

II. PRINCIPLES OF ANN TRAINED WITH AAHs

A. Artificial Neural Network

ANN is a mathematical model that simulates the collective
behavior among the interconnected neurons in the human brain.
The ANN adopted in this letter is the radial basis function
(RBF) neural network. Compared to other types of ANNs, RBF
has better approximation ability, simpler network structure,
and faster learning speed. Generally, RBF contains an archi-
tecture consisting of three layers, namely input, hidden, and
output layer. Each node inside the hidden layer adopts a radial
activated function, while nodes in the output layer implement
a weighted sum of the outputs of all hidden nodes. A typical
structure of a multi-input and multi-output (MIMO) RBF neural
network is shown in Fig. 1.

Theoretically, RBF neural networks can approximate any
continuous functions defined on a compact set to any prescribed
degree of accuracy by sufficiently expanding the neural network
structure [6]. Furthermore, neural network training is usually
carried out using a randomly selected training subset [7], [8]
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Fig. 1. Structure of a typical MIMO RBF neural network.

Fig. 2. AAHs obtained from 40-Gb/s RZ-DQPSK signals distorted by
selected combinations of transmission impairments: (a) OSNR � �� dB,
CD � � ps�nm, DGD � � ps; (b) OSNR � �� dB, CD � � ps�nm,
DGD � � ps; (c) OSNR � �� dB, CD � ��� ps�nm, DGD � � ps;
(d) OSNR � �� dB, CD � � ps�nm, DGD � �� ps.

that enhances the robustness of the networks rather than using
the predefined approach.

B. Asynchronous Amplitude Histogram

AAHs, or basically the empirical distribution of received
signal power, are sensitive to changes in OSNR, CD, and PMD
of the transmission link. Histograms obtained from 40-Gb/s
RZ-DQPSK signals distorted by selected combinations of
transmission impairments are shown in Fig. 2.

It is visually obvious that different impairments cause dif-
ferent changes to the histograms. Existing AAH-based moni-
toring techniques usually model the histogram as a mixture of
Gaussian distributions and parameters such as the means and
variances of these Gaussians are used to calibrate against var-
ious channel impairments [9], [10]. However, as all these pa-
rameters are sensitive to channel, they cannot be easily used for
independent or joint monitoring of OSNR, CD, and PMD. In
contrast with extracting parameters form the AAH, the whole
histogram itself contains information about the amount of dif-
ferent impairments in the system. Therefore, we can use the
whole histogram represented by a vector of amplitude levels and
corresponding occurrences as the ANN input neurons and the

Fig. 3. System setup for OSNR and CD monitoring. EDFA: erbium-doped fiber
amplifier; VOA: variable optical attenuator.

Fig. 4. (a) OSNR, (b) CD, and (c) DGD monitoring results for a 40-Gb/s
RZ-DQPSK system using ANN with AAH as inputs.

outputs of the ANN are the actual OSNR, CD, and PMD values
of the system. In our case, each histogram contains 100 bins.
Thus, the number of input neurons is 200.

III. SIMULATION RESULTS AND DISCUSSION

A. RZ-DQPSK Systems

The system configuration used in the simulations is shown in
Fig. 3. A sequence of 40-Gb/s RZ-DQPSK signals with 50%
duty cycle is transmitted through a CD/PMD emulator. The
erbium-doped fiber amplifier (EDFA) adds ASE noise to the
signal and the noise power is controlled by a variable optical
attenuator (VOA) to realize different OSNR. At the receiver,
the signals are photodetected and then asynchronously sampled.
The sampling rate can be much lower than the symbol rate.

To demonstrate the proposed monitoring technique, we
formed a pool of 2706 histograms by sweeping through OSNR
values from 10 to 30 dB (in steps of 2 dB), CD from 0 to
400 ps/nm (in steps of 10 ps/nm), and DGD from 0 to 10 ps
(in steps of 2 ps). Seven hundred histograms are randomly
chosen for testing and the rest are used as training data. The
number of hidden neurons is optimized to be 326 using the
incremental constructive method. The monitoring results for
OSNR, CD, and PMD monitoring are given in Fig. 4. As the
testing results of ANN-based technique depend on the random
selection of training data, ten independent trials of random
training and testing processes were conducted. The average
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Fig. 5. AAHs obtained from 40-Gb/s NRZ-16-QAM signals distorted by se-
lected combinations of transmission impairments: (a) OSNR � �� dB, CD �

� ps�nm, DGD � � ps; (b) OSNR � �� dB, CD � � ps�nm, DGD � � ps;
(c) OSNR � �� dB, CD � ��� ps�nm, DGD � � ps; (d) OSNR � �� dB,
CD � � ps�nm, DGD � �� ps.

Fig. 6. (a) OSNR, (b) CD, and (c) PMD monitoring results for a 40-Gb/s
NRZ-16-QAM system using ANN with AAH as inputs.

root-mean-square (rms) error is 0.45 dB, 9.82 ps/nm, and
0.912 ps for OSNR, CD, and PMD.

B. NRZ-16-QAM Systems

With the growing demand on transmission rates, advance
modulation formats such as QAM have become increasingly
popular for increasing spectral efficiencies. We also study the
use of ANN trained with AAH for OSNR, CD, and PMD
monitoring for NRZ-16-QAM systems. The simulation setup
is similar to the one in Fig. 3, except that an NRZ-16-QAM
transmitter is used instead. AAH obtained from simulations for
selected combinations of transmission impairments are shown

in Fig. 5. Again, each histogram exhibits distinct features
corresponding to various impairments.

We formed a pool of 3157 histograms by sweeping through
OSNR values from 10 to 30 dB (in steps of 2 dB), CD from 0 to
400 ps/nm (in steps of 10 ps/nm), and DGD from 0 to 30 ps (in
steps of 5 ps). One thousand histograms are randomly selected
for testing and the rest are used for ANN training. The number of
hidden neurons is optimized to be 287. Fig. 6 shows the testing
results for OSNR, CD, and PMD monitoring. The average rms
error for ten independent trials of random training and testing is
0.2 dB, 9.66 ps/nm, and 0.65 ps for OSNR, CD, and PMD. The
larger PMD monitoring range of NRZ-16-QAM signals may be
ascribed to the fact that the symbol rate of NRZ-16-QAM is
lower than that of RZ-DQPSK signals for a given bit rate which
enables the histogram to identify larger PMD impairments be-
fore losing distinguishable characteristics.

IV. CONCLUSION

In this letter, we proposed the use of ANN trained with AAHs
as low-cost alternatives for accurate simultaneous OSNR, CD,
and PMD monitoring which is not achievable by other moni-
toring techniques using AAH alone. Simulation results obtained
from both 40-Gb/s RZ-DQPSK and NRZ-16-QAM systems
demonstrate high monitoring accuracies with similar dynamic
ranges compared to other known ANN-based techniques.
Since only received signal amplitudes are measured and no
timing/clock recovery is required, the proposed technique will
be applicable to different modulation formats with different
symbol rates.
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