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Abstract: The lack of the sufficient and diverse training data is one of the main challenges
limiting performances of the machine learning enabled applications in optical networks. Here,
we propose a deep learning based sequential data augmentation technique for the aggregate
traffic data augmentation for diverse optical network scenarios. A generative adversarial network
(GAN) model is trained with the experimental traffic data to automatically extract the substantial
characteristics of the experimental traffic data through the zero-sum game theory and then augment
the traffic data adaptively. The statistical evaluation parameters of the augmented traffic are
mean, variance and Hurst exponent. To add comparisons, two other classical generative models
including the statistical parameter configuration (SPC) model and the variational autoencoder
(VAE) model are also adopted to generate the traffic data that are similar to the actual traffic
data. The comprehensive comparisons among the proposed GAN, the SPC and VAE show
that the performances of the GAN exceed those of the SPC and the VAE obviously. The mean
and the variance of the augmented traffic data from the GAN are almost equal to those of
the experimental traffic data, where the average deviations are both within 2%. The Hurst
exponent of the augmented traffic data from the GAN is respectively near 90% and 96% of
those of the experimental traffic data in the access network and the core network. To estimate
the similarity intuitively, the well-known k-mean algorithm is used to cluster the augmented
traffic data according to the centroids determined by the corresponding experimental traffic
data and the clustering accuracies are all higher than 95% for 6 kinds of typical traffic types in
the optical networks. These results demonstrate that the proposed GAN is able to effectively
generate the traffic data that is very close to the experimental traffic data and is difficult to be
distinguished for diverse traffic types. Moreover, a relatively small dataset with a few hundred
pieces of experimental traffic data is required and the amount of the augmented traffic data from
the GAN is unlimited in theory, which can be augmented as much as we need. The proposed
traffic data augmentation technique also has the potential to be utilized in other sequential data
augmentation applications for the optical networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recently, machine learning (ML) enabled techniques have been widely used in optical commu-
nications to comply with the ever-increasing complexity and flexibility of optical transmission
systems and networks. For the optical transmission systems, the deployment of the reconfigurable
optical add-drop multiplexer (ROADM) and the coherent technology introduces complicated path
dependent impairments and diverse adjustable configuration parameters including the modulation
schemes, the symbol rate, the probabilistic shaping and the forward error correction overhead
[1-2]. To address those problems, many ML based techniques are developed for the adaptive
impairment compensation, the optical performance monitoring (OPM), the modulation format
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recognition (MFR) and the optical amplifier control [3—8]. For the optical networks, due to the
development of the software-defined networking (SDN), flexible and scalable data analyzers are
crucial for the increasing network size and network openness. To improve the capabilities of the
data analyzers for the optical networks, a plenty of ML applications are specially designed for
the quality of transmission estimation, the routing and spectrum assignment (RSA), the virtual
topology design and reconfiguration (VTDR) and the failure localization and prediction (FLP)
[9-11].

In particular, numerous ML techniques trained with the traffic data have been successfully
applied in the optical networks and have drawn a lot of attention. The traffic classification,
traffic prediction and traffic anomaly detection techniques based on the ML are exploited for the
resource reservation, the traffic grooming and the load balancing [12—14], which are capable of
enhancing the network resource utilization efficiency and the network dependability dramatically.
To guarantee the performances of the ML, the sufficient and diverse training data, the advanced
algorithms and the strong computing power are necessary. However, the sufficient actual traffic
data is not easy to be obtained. Even though amounts of actual traffic data is gathered from
optical networks for a long time, the diversity and the instantaneity are not available in general.
The data diversity is essential to improve the robustness and generalization performances of
the ML enabled techniques and it is common to utilize the data augmentation to increase the
size and diversity of the training dataset. Therefore, it is significant to propose sequential data
augmentation techniques to provide plenty of diverse synthesized traffic data. Meanwhile, with
the advent of emerging network services including the cloud computing, the virtual reality and
the social applications [15—16], an increasing variety of the traffic data means that the high
adaptivity and flexibility are needed in the traffic data synthesis for the optical networks.

For the network traffic data synthesis, the classic traffic models consist of the ON/OFF model,
the fractional Brownian motion model (FBM), the fractional autoregressive integrated moving
average (FARIMA) model and the wavelet based model [17-18] have been developed, where
the important traffic self-similarity has been successfully described. However, in the reported
classic traffic models, numerous experts are required to design the traffic models carefully.
Moreover, those classical traffic simulation models usually act as the service sources for the
routing and wavelength assignment and aim to general traffic to verify network system, not to
generate traffic similar to the actual data. What’s more, the actual traffic data is almost not
used to be approximated for the traffic data synthesis and the quantitative similarities between
the synthesized traffic and the actual traffic in the optical networks are generally not taken
into consideration. Therefore, it is crucial to propose more adaptive traffic data augmentation
techniques to provide sufficient and diverse traffic data that has consistent properties with the
actual traffic data for various network scenarios in the dynamic optical networks.

On the other hand, generative adversarial network (GAN), one of the core members in the deep
learning community, has shown remarkable ability in the image data augmentation, image style
transfer and the video generation [19-21] and has attracted a lot of interest since it was proposed
in 2014. Benefited from the zero-sum game theory, the competition between the generator and the
discriminator in the GAN drives the corresponding optimization procedures until the augmented
data is indistinguishable from the actual data [22]. This enlightens us to attempt to introduce the
GAN to realize the effective sequential data augmentation. To the best of our knowledge, few
work about the GAN based sequential data augmentation has been reported, not to mention the
aggregate traffic data augmentation for optical networks.

In this paper, we propose an adaptive traffic data augmentation technique based on the GAN
and utilize the experimental traffic data to augment the traffic dataset adaptively for various
networks scenarios including 6 kinds of typical traffic types in the access networks and the
core networks. Further, the augmented traffic date from the GAN are evaluated through the
statistical evaluation parameters including the mean, the variance and the Hurst exponent. The
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similarity between the augmented traffic data and the experimental traffic data is then verified by
the well-known clustering algorithms named k-means algorithm. To add comparisons, two other
classical generative models, i.e. the statistical parameter configuration (SPC) model [23,24]
and the variational autoencoder (VAE) model [25], are also adopted to generate the traffic data.
Results demonstrate that the proposed GAN is effective to augment the traffic data for diverse
network scenarios. Taken into account of the mean, variance, Hurst exponent and the clustering
accuracy, the generated traffic from the GAN is more similar to the corresponding actual traffic
data than those from the SPC and AVE. In the traffic data augmentation for the school area (SA)
in the access network, the average deviation of the mean, the variance and the Hurst exponent is
about 0.001, 0.0002 and 0.026 accordingly, which is only 12.5%, 3.3%, 86.7% of those in the
SPC and 9.1%, 10.0%, 68.4% of those in the VAE. Moreover, the clustering accuracy is 97.3%,
92.8% and 93.6% in the GAN, the SPC and the VAE respectively. The proposed GAN based
technique is capable of adaptively augmenting the traffic data on demand for diverse optical
network scenarios with small amounts of experimental traffic data, which also has the potential
to be used for other sequential data augmentation applications.

2. Operational principle
2.1. Concept of the generative adversarial network

Generative adversarial network is specially designed for the data augmentation, which has
been successful applied in the image data augmentation and the video generation. The key
behind the GAN is the unique framework enlightened from the zero-sum game theory, where
the discriminator and the generator are pitted against each other. In the GAN based traffic data
augmentation, the objective of the discriminator is to correctly determine whether the data is
from the actual traffic dataset or the augmented traffic dataset. Contrarily, the generator transfers
the random noise into the augmented data and tries to make the characteristics of augmented
data close to those of the actual data. After the intense competition, the discriminator and the
generator are improved by each other and the augmented data eventually cannot be differentiated
from the actual data.

The specific structure of the GAN based traffic data augmentation technique is illustrated in
the Fig. 1(a). In the proposed GAN, the 24 x 1 actual traffic data, corresponding to 24 hours in
one day, from different network scenarios is firstly normalized as the traffic data ranging from
0 to 1.The normalized actual traffic data is then sent into the discriminator D. Meanwhile, the
24 x 1 normalized random noise is generated and further fed into the generator G, where the
noise data is transformed as the augmented traffic data gradually. As depicted in the Fig. 1(a), the
discriminator D and the generator G are both constructed by the classic artificial neural network
(ANN) in the proposed GAN. In the GAN, the discriminator D ties to differentiate whether the
input traffic data belongs to the actual traffic group or the augmented traffic group, while the
generator G intends to confuse the discriminator D and make it classify the augmented traffic
data into the actual traffic data. Therefore, the objectives of the D and G are adversarial and
should be taken into consideration comprehensively in the loss function of the GAN, which is
expressed in the Eq. (1) as below:

N

L(D,G) = % > (tlog D) + log(1 - D(G(&")))- (1)

i=1

where x and g respectively denotes the normalized actual traffic data and normalized random
noise data and i represents the i-th traffic data sample. The output of discriminator is D(x) and
the augmented traffic data is generated by the G(g). What’s more, N denotes size of the training
sample dataset. Seen from the loss function L(D, G), the D is trained to maximize the probability
of allocating the correct label to the actual traffic data and the augmented traffic data. Meanwhile,
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the G is trained to minimize the term: log(1 — D(G(g))). Thus, the total goal of the GAN is to
optimize the loss function L(D, G) according to the zero-sum game theory.
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Fig. 1. Schematic diagram of (a).the specific structure of the GAN used to augment the
traffic data in the ML-assisted traffic analyzer (b).the data plane in the optical networks. ML:
machine learning; GAN: generative adversarial network.

During one iteration in the training procedure of the GAN, the parameters in the generator G
are fixed at first and the discriminator D is updated through the ascending its stochastic gradient.

0

0m+1=0m_ I
To0

N
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i=1

where 6 represents the weight vector in the discriminator D and m denotes the m-th iteration.
After the updating of the D, the discriminator is then frozen and the generator G is optimized by
descending its stochastic gradient.

dw \N ’ ®)

i=1

o [1 :
W™ = " —p— (_ Z {log(1 - D(G(g')}

where w is the weight vector in the generator. After iterations, the loss of the GAN will be
convergent gradually and the characteristics of the augmented traffic data will be close to those
of the actual traffic data.

2.2.  Principle of the k-means algorithm

After the traffic data augmentation of the GAN, it is significant to evaluate the quality of the
augmented data quantitatively. Besides the statistical evaluation parameters and the well-known
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clustering algorithm, i.e. k-means algorithm, are adopted to estimate the similarity between the
augmented traffic data and the corresponding actual traffic data intuitively.

As shown in the Fig. 2, during the training stage of the k-means algorithm, k£ denotes the
number of clusters, the centroids of different clusters of the actual traffic date are updated until
them are stable gradually. During the testing stage, the distances between the augmented traffic
data and the centroids are calculated and the augmented traffic data will be assigned with a
predicted cluster label corresponding to the traffic cluster with the nearest centroid. By comparing
the predicted cluster label with the true cluster label of the augmented traffic data, the clustering
accuracy is measured. When the characteristics of the augmented traffic data are close to those
of the actual traffic data, the same cluster label will be allocated to the corresponding augmented
traffic date. Therefore, it is straightforward to evaluate whether the augmented traffic data is
similar to the accordingly actual traffic data or not. In the k-means algorithm, the computation
method of the centroids is described in the Eq. (4):

1 i
= 1er DX @)

ieCy

where x’ denotes the i-th actual traffic data and the C; represents the traffic data samples in the
t-th cluster. Moreover, y, is the centroid of the #-th traffic data cluster. The predicted cluster
label of the augmented traffic data is determined according to the Euclidean distance between the
augmented traffic data and different centroids.

P; = index(min [’ — ] ]?). 5)

where P; denotes predicted cluster label of the augmented traffic data. The function index(-) can
return the index, corresponding to the cluster label, of the centroid corresponding to the minimum
Euclidean distance among all centroids and the augmented traffic data. During the training of
the k-means, the initial centroids of different clusters are chosen randomly. After iterations, the
updated centroids are replaced by the mean of the samples belonging to the same cluster until the
centroids are stable. Once the centroids of different clusters of the actual traffic data are obtained,
the predicted cluster label of the augmented traffic data will be allocated according to the Eq. (5).
Comparing the predicted cluster label with the true cluster label, the clustering accuracy can
be calculated, which is able to evaluate the similarity between the actual traffic data and the
corresponding augmented traffic data.

———————————————————

Fig. 2. Concept illustration of the k-means algorithm. y, u, and u5 denotes the optimized
centroid of the clusterl, cluster2 and cluster3 respectively. At first, the initial centroids are
chosen randomly. After iterations, the centroids are convergent and stable eventually.
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3. Applications in optical networks

In this section, the potential applications and value of the proposed sequential data augmentation
method based on the GAN in specific optical network scenarios are discussed. Recently, the
artificial intelligent (AI) techniques have been widely used in the cognitive optical networks. The
Al-enabled cognitive optical network is promising to support the stringent quality of service from
future 5G networks [26]. However, one of the crucial limitations in the researches on Al-based
cognitive optical network is the lack of actual monitoring data for the targeted networking
scenarios [27]. Especially for the inception 5G service, where sufficient monitoring data collected
from the existed optical network are not available and less monitoring data are gathered from
the testbed. To overcome the lack of actual data in Al-based cognitive optical networks, it
is necessary to propose effective data augmentation approaches to provide sufficient data for
machine learning applications. The proposed GAN has the potential to overcome this problem
and augment high-quality data that are similar to the actual monitoring data from the cognitive
optical network. One of the significant use cases of the proposed GAN for the cognitive optical
network is to augment sufficient traffic data to train numerous Al-enabled applications including
the reconfiguration of virtual network topologies according to the traffic changes [23], the
dimensioning of next planning steps based on the traffic prediction [28,29], implementing of the
load balancing and the resource reservation through the traffic classification [30]. The actual
Al-enabled applications listed above in the cognitive networks require sufficient traffic data to
train the machine learning algorithms.

Besides the adaptive traffic data augmentation, it should be noted that the proposed GAN
can also provide a kind of general sequential data augmentation approach. In the cognitive
optical network, the time-varied monitoring elements are widely distributed, including the optical
power changes, optical signal noise ratio (OSNR) fluctuations, bit error ratio (BER) variations
and the tendencies of running parameters in various optical network equipment such as the
reconfigurable optical add-drop multiplexer (ROADM), optical cross-connect (OXC) devices,
optical transceivers, etc. Those sequential monitored data are collected and further sent into
the Al-enabled analysis modules in the control plane in the cognitive network, which can be
analyzed to predict the optical component fault according to the variation of the temperature and
the optical power in the optical transmission network (OTN) devices, find the specific location of
network faults following the OSNR/BER degrading tendencies [31] and reduce the number of
network alarms on the basis of the device condition parameters changes [32]. These time-varied
monitored data in the cognitive optical network can also be augmented by the proposed GAN to
generate sufficient data to train the Al-based models. Thus, the proposed GAN has the potential
to augment diverse sequential monitoring data, not only the traffic data, for the cognitive optical
network to enable the numerous intelligent Al-based network applications.

4. Experimental results and analysis

In this section, the performances of the GAN based traffic data augmentation technique are
investigated in detail. Firstly, the experimental traffic data collected from three common scenarios
in the access networks, i.e. the residential area (RA), the school area (SA) and the business area
(BA), are utilized to train the GAN respectively and then the statistical evaluation parameters are
adopted to compare the augmented traffic data with the corresponding experimental traffic data.
Moreover, the k-means algorithm is selected to estimate their similarities intuitively. Further,
the application of the adaptive traffic augmentation technique based on the GAN is extended to
traffic data augmentation for the core network and the augmented traffic data in three kinds of
trunks is evaluated. The types of the traffic data in three trunks include the morning-peak traffic,
the evening-peak traffic and the multi-peak traffic. To add comparisons, two other classical
generative models including the SPC model and the VAE model are also adopted to generate
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the traffic data that are similar to the actual traffic data. All of the experimental traffic data is
gathered from the optical networks of the China Mobile Communications Corporation (CMCC).

4.1. Traffic data augmentation for the access networks

To display the adaptive learning procedure of the proposed GAN based traffic augmentation
technique, taking the traffic data augmentation for the SA for example, the relationship curves
between training losses of the GAN and the number of iterations are shown in the Fig. 3(a).
During the training stage of the GAN, the weights in the discriminator are updated to discriminate
whether the category of the traffic data is the actual traffic or the augmented traffic. The total loss
of the discriminator consists of the real loss, i.e. the loss of judging the actual traffic data as the
augmented traffic data, and the fake loss, i.e. the loss of classifying the augmented traffic data as
the actual traffic data. After iterations, the real loss and the fake loss of the discriminator in the
GAN reach to the balance point, where both the real loss and the fake loss cannot be decreased
and the corresponding loss curves are almost overlapped. This means that the discriminator is not
able to differentiate whether the traffic data is actual or augmented by the generator. Moreover,
the loss of the generator, i.e. the loss of generating the traffic data that is recognized by the
discriminator as the augmented traffic data, fluctuates at the beginning of the training and further
becomes more and more convergent, which indicates that the quality of the augmented traffic data
is gradually stable. After the training stage, the augmented traffic is indistinguishable from the
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Fig. 3. (a).the training loss curves of the GAN in terms of the number of the iterations;
the comparisons between (b).the mean, (c).the variance and (d) the Hurst exponent of the
augmented traffic data and those of the experimental traffic data from the SA in the access
networks. SA: the school area.
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actual traffic and the probabilities of judging the traffic data as the actual data or the augmented
data are both near 0.5.

Further, the augmented traffic data in the SA is evaluated and analyzed according to the
statistical evaluation parameters of the traffic data. The Hurst exponent is recognized as the most
significant statistical characteristic of the traffic data, which is used to describe the self-similarity
of the traffic data and the classic R/S method [33,34] is adopted to calculate the Hurst exponent
in this work. The comparisons between these statistical characteristics of the augmented traffic
data and those of the actual traffic data from the SA in the access networks are shown in the
Figs. 3(b)-3(d). It is observed that the mean, the variance and the Hurst exponent of the
augmented traffic data are similar to those of the actual traffic data. After the convergence of the
GAN, the average deviation of the mean, the variance and the Hurst exponent is about 0.001,
0.002 and 0.026 respectively.

Moreover, it is significant to select the parameters and architecture of the GAN to guarantee
the convergence speed and the performances of the augmented traffic data from the GAN. The
proposed GAN is constructed by a discriminative network and a generative network, where
the classic single-hidden-layer artificial neural networks (ANN) are adopted. The reasons
why we choose the single-hidden-layer ANN are that three-layer ANN is capable of fitting
every complicated function and the sequential traffic data in the form of one dimension (1D)
is convenient to be processed in the ANN. There are three important parameters required to be
selected: the number of iteration times, the number of neurons in the hidden layer and the type
of activation function. Moreover, the effect of different size of the training sample dataset is
also investigated. To simplify the discussion, we choose a typical network scenario where the
126-day actual traffic data under the monitoring period T of 60 min are collected from the SA
as the training sample dataset. The normalization processing is carried out for the collected
actual traffic data to accelerate the training procedure of the GAN. To evaluate the convergence
performances of the GAN, the Hurst exponent is adopted as the observation index for the reason
that the Hurst exponent is recognized as the most significant statistical characteristic of the traffic
data.

In the Fig. 4, the effects of different iteration times and diverse types of activation functions
on the Hurst exponent of the generated traffic are illustrated. In the ANN, there are three
classical types of activation functions: the rectified linear units (relu) activation function, the
hyperbolic tangent (tanh) activation function and the sigmoid activation function. As shown in
the Fig. 4, with the increase of the number of iteration times (above 600), the Hurst exponent of
the generated traffic from the GAN with different activation functions gradually converges to
relatively stable values. From the Fig. 4(a), we can see that the convergence values of the ANN
with the relu activation function are closest to those of the actual traffic data. It can be found
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Fig. 4. the effects of (a).diverse types of activation functions, (b).various number of neurons
in the hidden layer and (c) different size of the training sample dataset on the Hurst exponent
of the generated traffic from the GAN.
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from the Fig. 4(b) that the convergence performance the GAN is more stable when 40 hidden
neurons are adopted. Finally, with the increase of the size of the training sample, the Hurst
exponent difference between the generated traffic and the actual traffic decreases accordingly and
there are less difference reduction when the size of the training sample dataset is larger than 60.
According to Figs. 4(a)—4(c), we select the relu activation function and the number of the hidden
neuron is set as 40. To guarantee the training performance, 126 pieces of traffic data are used as
the training dataset for the traffic data augmentation.

Besides the SA in the access network, the GAN based traffic data augmentation for other
two common scenarios including the business area (BA) and the resident area (RA) is also
researched. In the Fig. 5, every row displays the comparisons between the actual traffic data and
the corresponding augmented traffic data for three kinds of traffic scenarios. We can see that the
distribution of the augmented traffic flow data from the GAN is similar with those of the actual
traffic data, which indicates that the GAN based traffic data augmentation technique is feasible
in diverse traffic scenarios for the access networks. For each class of traffic data, ~120 pieces
of experimental traffic data are collected as the dataset to train the GAN. During the training
stage, the generative neural network in the GAN gradually learns the intrinsic characteristics of
the actual traffic data in the specific network scenarios and transfers the random noise into the
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augmented traffic data that the discriminative neural network cannot recognize the difference
from the corresponding actual traffic data.

After the training of the GAN, 300 pieces of traffic data are augmented for every traffic scenario
and the mean, variance and the Hurst exponent of the augmented data are calculated. What’s
more, the similarity between the actual traffic data and the augmented data is evaluated intuitively
by the k-means algorithm. The reasons why k-means algorithm is selected are that it is capable
of clustering different types of data according to the data distribution automatically and it is easy
to understand. During the training stage of the k-means algorithm, the centroids of different
clusters of the actual traffic date are upgraded until them are stable. During the testing stage, the
augmented traffic data is assigned with a predicted cluster label. By comparing the predicted
cluster label with the true cluster label of the augmented traffic data, the clustering accuracy
is measured. When the characteristics of the augmented traffic data are close to those of the
actual traffic data, the same cluster label will be allocated to the corresponding augmented traffic
date. Thus, it is straightforward to evaluate whether the augmented traffic data is close to the
accordingly actual traffic data or not. As shown in the Fig. 6(a), the clustering accuracy of three
kinds of traffic data in the access network is 98.0%, 97.3% and 97.7% respectively.

RA SA BA 1.0
. w— Acess_Centroid]
—e— Acess_Centroid2
RA 0.0% 20% 0.8 4~ Acess_Centroid3
2
—_— Z
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=
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Fig. 6. (a).the clustering proportion of the k-means algorithm at each traffic types including
the traffic data in the RA, SA and BA in the access network; (b).the centroid curves of
different clusters identified in experimental traffic data from the access network.

To show the differences among the traffic data from various clusters, the centroid curves of
diverse clusters recognized in the actual traffic data are selected to illustrate for the reason that the
traffic data will be assigned into the cluster where the minimum distance between the traffic data
and the corresponding centroid reaches in the k-means algorithm. In the other word, if the traffic
data belongs to certain one cluster, the traffic data will be closest to the centroid of this cluster.
We can see from the Fig. 6(b) that three centroid cluster curves are different from each other
obviously in the access network, which means that the clusters identified in the experimental
traffic data are also distant.

To add comparisons, two other classical generative models including the SPC model and the
VAE model are also adopted to generate the traffic data. The reasons why we choose them are
that the SPC model is intuitive to use the statistical parameters to configure the stochastic process
and then generate traffic data with the similar statistical properties with actual traffic data and the
VAE is the one of widely-used generative models in the machine learning community. As shown
in the Table 1, after the training of the GAN, the average deviation of the mean, the variance and
the Hurst exponent is about 0.001, 0.0002 and 0.026 in the traffic data augmentation for the SA
in the access network accordingly, which is only 12.5%, 3.3%, 86.7% of those in the SPC and
9.1%, 10.0%, 68.4% of those in the VAE. Moreover, the clustering accuracy is 97.3%, 92.8%
and 93.6% in the GAN, the SPC and the VAE respectively. For the traffic data augmentation in
the BA and the RA, the average difference between the generated traffic data and the actual traffic
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data is respectively 0.2%, 0.3% and 11.3% in terms of the mean, variance and the Hurst exponent
in the GAN while the corresponding average difference is 9.4%, 4.6% and 28.1% in the SPC
and 2.2%, 3.6% and 18.7% in the VAE. In the traffic data augmentation for the access network,
the mean, variance, Hurst exponent and the clustering performances of GAN obviously exceeds
those of the SPC and VAE, which is consistent with the traffic curve comparisons in the Fig. 5.

Table 1. The average performances of the augmented traffic data from three generative models
trained with the actual traffic dada with the 60-minute interval for different traffic scenarios in the
access network.

Performance parameter Mean value Variance value Hurst exponent Clustering accuracy
Traffic type Model Act Aug Act Aug Act Aug Aug
SA GAN 0350 0349 0.040 0.040 0.303  0.329 97.3%
SPC 0350 0342 0.040 0.046 0303 0.273 92.8%
VAE 0.350  0.361 0.040  0.038  0.303  0.34] 93.6%
BA GAN 0.331 0.331 0.041 0.043 0307 0.321 97.7%
SPC 0.331 0.324  0.041 0.031 0.307  0.391 96.3%
VAE 0.331 0332 0.041 0.038  0.307 0.354 97.9%
RA GAN 0.300  0.301 0.046  0.046 0470  0.385 98.0%
SPC 0300 0250 0.046  0.043 0470 0.335 79.7%
VAE 0300 0312  0.046  0.049 0470 0.366 87.0%

4.2. Traffic data augmentation for the core networks

In this section, the feasibility of the GAN based traffic data augmentation technique for the traffic
data in the core network is investigated. Firstly, we analyze the effects of different time interval
of the actual traffic data on the performances of the GAN. With the decrease of the time interval,
the size of the traffic data increases exponentially. When the time interval is set as 60 minutes, 30
minutes, 10 minutes and 5 minutes respectively, the size of the traffic data is valued in 24 x 1,
48 x 1, 144 x 1 and 288 x 1 accordingly. As shown in the Fig. 7(a), the average clustering
accuracy for three kinds of augmented traffic data increases from 98.3% to 99.8% when the
size of the traffic data varies from 24 X 1 to 288 X 1. With the decrease of the time interval,
more detailed information of the traffic data can be exploited and then the convergent clustering
accuracy is improved gradually. Finally, the clustering accuracy increases by a small margin and
achieves the saturation. To accelerate the training procedure of the GAN, the time interval of the
traffic data is set as 24 x 1.

Further, the specific clustering accuracy of augmented traffic data for different types of traffic
in the core network is also analyzed. As demonstrated in the Fig. 7(b), the clustering accuracy
of the augmented traffic data with size of 24 x 1 for three categories of trunks, i.e. trunkl:
morning-peak traffic, trunk2: multi-peak traffic and trunk3: evening-peak traffic, is 100.0%,
95.6% and 99.4% respectively. The clustering accuracy of the augmented traffic data with multi
peaks is about 4% less than those with single peak because more complicated fluctuations are
needed to be captured for the GAN for the multi-peak traffic data.

Moreover, the specific clustering results with the different number of iterations of the GAN are
displayed in the Fig. 7(c). With the increase of the number of iterations, the clustering accuracies
are improved gradually. After ~700 iterations, the clustering accuracy of the augmented traffic
data is convergent. All of clustering accuracies of augmented traffic data for three kinds of trunks
in the core network are more than 95%. It should be noted that centroids of these clusters are
obtained automatically from the experimental traffic data by the k-means algorithm without
the manual parameter selection, where k is set as 3 corresponding to three clusters. After 700
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Fig. 7. (a).the average clustering accuracy curves of the augmented traffic data from the
GAN for the core network; (b).the specific clustering accuracy of the 60-minute-interval
augmented traffic data for three types of trunks; (c).the clustering results shown in the format
as confusion matrixes when the number of iterations of the GAN is set as (I).1, (II).10,
(1II).100 and (IV). 700 respectively; (d).the centroid curves of different clusters identified in
experimental traffic data from the core network.

iterations, the specific augmented traffic data for the trunk1, the trunk2 and the tunck3 is displayed
in the Fig. 7. It is observed that the high similarity between the augmented traffic data and the
actual traffic data is in accordance with the high clustering accuracy. In the Fig. 7(d), three
centroid cluster curves are different from each other in the core network, which indicates that the
clusters identified in the actual traffic data have obvious differences.

Moreover, the comparisons among three traffic generative models in the traffic data augmenta-
tion for the core network are also investigated. We can see from the Table 2 that the maximum
difference of the mean and the deviation of the variance between the augmented traffic data and
the actual traffic data is accordingly 1.7% and 1.5% in the GAN, which is respectively 2.7% and
4.3% in the SPC and 1.2% and 12.9% in the VAE. What’s more, the average difference between
the actual traffic and the generated traffic in terms of the Hurst exponent is respectively valued
in 3.5%, 32.9% and 15.1% in the GAN, SPC and VAE. The average clustering accuracy of the
augmented traffic from the GAN also outperforms than those of augmented traffic data from the
SPC and the VAE, which is consistent with the traffic profile comparisons in the Fig. 8.

Taken into account of the mean, variance, Hurst exponent and the clustering accuracy, the
generated traffic data from the GAN are more similar to the corresponding actual traffic data than
those from the SPC and AVE, which also confirms to the traffic profile comparisons between the
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Fig. 8. the comparisons between the augmented traffic data from the GAN, SPC and VAE
and the corresponding actual traffic data from (a)-(c).the Trunk1, (d)-(f).the Trunk2 and
(g)-(i).the Trunk3 in the core networks. Trunkl: morning-peak traffic; Trunk2: hybrid
traffic; Trunk3: evening-peak traffic.

Table 2. The average performances of the augmented traffic data from different generative models
trained with the actual traffic dada with 60-minute interval for different traffic scenarios in the core
network. T1: trunk1 (morning-peak traffic); T2: trunk2 (hybrid traffic); T3: trunk3 (evening-peak

traffic).
Performance parameter Mean value Variance value Hurst exponent Clustering accuracy
Traffic type Model Act Aug Act Aug Act Aug Aug
T1 GAN 0496 0496  0.067 0.066 0.659  0.631 100.0%
SPC 0496 0501  0.067 0.068  0.659  0.349 97.9%
VAE 0496 0494  0.067 0.064 0.659 0.774 99.0%
T2 GAN 0483 0475 0.057 0.057 0.749 0.711 95.6%
SPC 0483 0476 0.057 0.058 0.749  0.538 86.3%
VAE 0483 0477 0.057 0.051 0.749  0.595 93.0%
T3 GAN 0484 0485 0.070 0.069 0591  0.598 99.4%
SPC 0.484 0497 0.070 0.073 0591 0451 97.9%
VAE 0.484  0.483 0.070 0.079 0591  0.633 99.0%
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generated traffic and the actual traffic. Therefore, the proposed GAN is more suitable to generate
diverse traffic data that is close to the actual traffic data for the optical networks. In the SPC, the
theory is intelligible and the traffic generative model is easy to be implemented, but the traffic data
distribution is assumed as the certain distribution (the normal distribution is chosen generally).
For the increasing complex and diverse traffic types from emerging network applications, the
performances of the SPC for the traffic data augmentation are limited by the finite description
capability of fixed traffic data distribution models. Contrastively, the data distribution model
is learned from the actual traffic data in the GAN. The GAN is specialized in approximating
the actual data distribution adaptively through the zero-sum gaming theory without the traffic
distribution assumption. Compared with the VAE, one of the classic generative models in the
machine learning community, the GAN is capable of automatically extracting eccentric features
to improve the robust of the trained network and avoid over-fitting. After the adversarial learning
procedure, the essential features of the actual traffic data are discovered by the well-trained GAN.
Therefore, the GAN can be more insensitive to the variation among the same traffic types and
generate the traffic data that conforms to the characteristics of the actual traffic robustly.

Moreover, the clustering accuracy, the mean, the variance and the Hurst exponent of the
augmented traffic data with different intervals in the core networks are also calculated in the
Table 3. When the time interval of the traffic data is set as 60 minutes, the average deviation of the
mean, the variance and the Hurst exponent between 900 pieces of augmented traffic data and 360
pieces of experimental traffic data in the core network is 1.2%, 1.0% and 3.5% respectively. For
the traffic data with the other time intervals, the similarities between the augmented traffic data
and the experimental traffic data are also very high. In the telemetry context, traffic monitoring
data can be measured with sub-second intervals. The feasibility of the proposed GAN for the
traffic data augmentation where the granularity of the traffic data is 0.5s is also investigated.
Owing to the monitoring granularity limitation, the minimum traffic monitoring granularity
of the actual traffic data we have collected is 5 minutes. To investigate the feasibility of the
proposed GAN for the traffic data augmentation with the sub-second interval, the polynomial
interpolation is implemented for the actual traffic data with 5-minute interval and the traffic data
is then resampled with the 0.5-second granularity. The resampled traffic data are further sent
in to the GAN to generate the augmented traffic. As shown in the Table 3, the trained GAN is
able to augment the traffic data where the traffic profiles are consistent with those of the traffic
data with the 0.5-second interval. The average deviation between the augmented traffic data and
the actual traffic data is respectively valued in 4.0%, 6.3% and 8.7% on the mean, variance and
the Hurst exponent. Thus, the proposed GAN is also suitable for the fine-granular traffic data
augmentation where the sub-second-interval traffic data served as the training data.

The comprehensive results show that the GAN-based traffic augmentation technique is able to
capture the major features of different traffic types in the core network. Moreover, the detailed
comparisons between the augmented traffic data from the GAN and the actual traffic data about
the mean, the variance and the Hurst exponent for the access networks and the core networks are
concluded in the Table 4. On the one hand, in the access network, the difference of the mean and
the deviation of the variance between the augmented traffic data and the experimental traffic data
is near 0.2% and 1.6% respectively, which is 1.2% and 1.0% in the core network accordingly. On
the other hand, the Hurst exponent of the augmented traffic data is about 90% and 96% of the
corresponding actual traffic data in the access network and the core network respectively. As we
can see from the Table 2, the mean, the variance and the Hurst exponent of the augmented traffic
data are all very close to those of the experimental traffic data. The reasons why the general
performances of the GAN for the core network traffic augmentation are slightly better than those
for the access network traffic augmentation are that the traffic data is more stable and regular in
the core network, where the unpredictable traffic fluctuations from diverse services in the access
network are converged and may be canceled each other out. Moreover, the clustering accuracies
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Table 3. The average performances of the augmented traffic data from the GAN trained with the
actual traffic data with 60-minute, 30-minute, 10-minute, 5-minute and 0.5-second intervals in the
core network. Act: actual traffic data; Aug: augmented traffic data.

Performance parameter Mean value Variance value Hurst exponent Clustering accuracy
Traffic type Act Aug Act Aug Act Aug Aug
60min T1 0.496 0.496 0.067 0.066 0.659 0.631 100.0%
T2 0.483 0.475 0.057 0.057 0.749 0.711 95.6%
T3 0.484 0.485 0.070 0.069 0.591 0.598 99.4%
30min T1 0.499 0.501 0.607 0.063 0.671 0.617 100.0%
T2 0.484 0.483 0.055 0.058 0.752 0.723 100.0%
T3 0.483 0.475 0.066 0.066 0.596 0.521 99.1%
10min T1 0.483 0.487 0.057 0.060 0.720 0.652 100.0%
T2 0.475 0.477 0.053 0.059 0.740 0.731 100.0%
T3 0.465 0.467 0.064 0.076 0.632 0.551 98.0%
Smin T1 0.499 0.469 0.060 0.053 0.671 0.628 100.0%
T2 0.484 0.482 0.055 0.053 0.752 0.636 100.0%
T3 0.483 0.452 0.066 0.065 0.596 0.568 99.6%
0.5s T1 0.461 0.464 0.044 0.043 0.662 0.631 100.0%
T2 0.455 0.441 0.041 0.047 0.047 0.622 100.0%
T3 0.450 0.461 0.053 0.054 0.589 0.554 99.8%

for 6 kinds of typical traffic types are all above 95%. The comprehensive results demonstrate that
the proposed GAN is capable of extracting the intrinsic characteristics of traffic data in 6 kinds of
network scenarios and providing sufficient and diverse augmented traffic data as we need for the
dynamic optical networks.

Table 4. The average performances of the augmented traffic data from the GAN trained with the
actual traffic dada with 60-minute interval for different traffic scenarios in the optical network. SA:
school area; BA: business area; RA: resident area.

Performance parameter Mean value Variance value Hurst exponent Clustering accuracy
Traffic type Act Aug Act Aug Act Aug Aug
Access network SA 0.350 0.349 0.040 0.040 0.303 0.329 97.3%
BA 0.331 0.331 0.041 0.043 0.307 0.321 97.7%
RA 0.300 0.301 0.046 0.046 0.470 0.385 98.0%
Core network Tl 0.496 0.496 0.067 0.066 0.659 0.631 100.0%
T2 0.483 0.475 0.057 0.057 0.749 0.711 95.6%
T3 0.484 0.485 0.070 0.069 0.591 0.598 99.4%

5. Conclusion

The performances of the machine learning based applications are usually limited by the lack of the
diverse training data in practice. By employing the excellent data augmentation and adversarial
learning capability of the GAN, an adaptive aggregate traffic data augmentation technique based
on deep learning is proposed for 6 kinds of typical network scenarios. The statistical evaluation
parameters are adopted to evaluate the augmented traffic data from the trained GAN. After being
trained with the experimental traffic data, the deviations between the augmented traffic data and
the actual traffic data in the mean and the variance are both less than 1.7%. The Hurst exponent
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of the augmented traffic data is about 90% and 96% of the corresponding actual traffic data in the
access network and the core network respectively. To be more intuitive, the k-mean algorithm
is used to estimate the similarity between the augmented traffic data and the actual traffic data.
The clustering accuracies are all above 95% for different traffic categories. The comprehensive
comparisons among the proposed GAN, the SPC and VAE show that the performances of the
GAN exceed those of the SPC and the VAE. The proposed GAN is capable of learning the
intrinsic features of various traffic types through the zero-sum game theory and transferring the
random noise into the augmented traffic data that is indistinguishable from the corresponding
actual traffic data. The proposed traffic data augmentation technique is able to generate the
diverse augmented traffic data on demand with less experimental traffic data and shows great
potentials in practical applications, such as the training dataset augmentation and the optical
communication system modeling. The feasibility of the proposed GAN for other sequential data
augmentation is also interesting to be investigated.
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