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Abstract—In Elastic Optical Networks (EONs), effective soft 
failure localization is of paramount importance to early detect 
service level agreement (SLA) violations while anticipating 
possible hard failure events. So far, failure localization 
techniques have been proposed and deployed mainly for hard 
failures, while significant work is still required to provide 
effective and automated solutions for soft failures, both during 
commissioning testing and in-operation phases. In this paper, we 
focus on soft failure localization in EONs by proposing two 
techniques for active monitoring during commissioning testing 
and for passive in-operation monitoring. The techniques rely on 
specifically designed low-cost optical testing channel (OTC) 
modules and on the widespread deployment of cost-effective 
optical spectrum analyzer (OSA). The retrieved optical 
parameters are elaborated by machine learning-based algorithms 
running in the agent’s node and in the network controller. In 
particular, the Testing optIcal Switching at connection SetUp 
time (TISSUE) algorithm is proposed to localize soft failures by 
elaborating the estimated BER values provided by the OTC 
module. In addition, the FailurE causE Localization for optIcal 
NetworkinG (FEELING) algorithm is proposed to localize 
failures affecting a lightpath using OSAs. Extensive simulative 
results are presented, showing the effectiveness of the TISSUE 
algorithm to properly exploit OTC information to assess BER 
performance of QPSK-modulated signals and the high accuracy 
of the FEELING algorithm incorrectly detecting soft failures as 
laser drift, filter shift, and tight filtering. 
 

Index Terms—Soft Failure Localization, Active and Passive 
Optical Monitoring, Elastic Optical Networks. 

I. INTRODUCTION 

AILURE localization is a very useful technique since it 
helps to reduce failure repair times greatly. When a hard 

failure occurs at the optical layer, the affected traffic needs to 
be immediately restored using currently available resources 
[2]-[8]. Nonetheless, some hard failures start as soft failures, 
and they can be detected as incipient degradations. Therefore, 
it would be desirable to anticipate hard failures so repairs and 
traffic rerouting could be planned in consequence. Even 
though some soft failures evolution might take a long time, 
they can affect the quality of optical connections (lightpaths) 
while in operation. 
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In addition, to guarantee that the resources supporting a 
lightpath (optical switching and amplification) perform 
properly before it can enter into operation thus avoiding 
service level agreement (SLA) violations, telecom operators 
test its performance by injecting a test signal in the ingress 
node and measuring the bit error rate (BER) in the egress node 
(commissioning testing). However, optical connection 
commissioning tests usually need human intervention, where 
typically two technicians with test equipment travel and stay 
in front of the end nodes to carry out the end-to-end tests. In 
addition, if high BER is measured at the egress node, more 
testing in intermediate nodes need to be performed to localize 
its cause. 

Several works can be found in the literature for failure 
localization in optical networks. For instance, authors in [9] 
proposed a monitoring trail (m-trail) mechanism for fast link 
failure localization as a result of a fiber cut. Based on defining 
different monitoring cycles and analyzing a set of alarm 
signals generated in each monitor of the cycle, failure 
localization is achieved. Authors in [10] presented a failure 
location algorithm to locate single and multiple failures in 
transparent optical networks by analyzing the received alarms.  

Note that these techniques do not allow the identification of 
soft failures affecting individual lightpaths, such as laser drift, 
filter shift, or tight filtering, and thus monitoring techniques to 
analyze and evaluate the quality of individual optical 
lightpaths in-line is required. In this regard, although Optical 
Spectrum Analyzers (OSA) could be used to analyze the 
spectrum of optical signals, until recently, the use of OSA in 
the network was very limited due to the high cost of accurate 
OSAs. However, improvements in OSA technology are taking 
place, and a new generation of cost-effective OSAs with sub-
GHz resolution is now available to be integrated into a new 
generation of optical nodes [11]. Furthermore, OSA and other 
monitoring techniques require sophisticated algorithms able to 
identify and localize failures. These algorithms can be 
deployed in the network controller, as well as in nodes’ 
agents, close to the monitoring points, to reduce the amount of 
monitoring data to be conveyed to the control/management 
plane [12]. 

In our previous work [1], we focused on detecting in 
advance excessive BER in lightpaths and proposed the BER 
Anomaly Detection (BANDO) algorithm. Once a BER 
degradation is detected, it is of paramount importance to 
identify and localize the failure, e.g. for in-operation network 
reconfiguration [13]. 
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Notwithstanding the availability of OSA monitoring 
systems in the optical nodes, their use assumes the existence 
of an optical signal to be analyzed, something that might not 
be true in some situations, such as during lightpaths’ 
commissioning testing. 

To reduce human intervention, active monitoring techniques 
were developed in the context of IP networks; they generally 
consist in generating and injecting a test signal that is used to 
measure metrics across Internet paths [14]. Although no 
similar active monitoring techniques are available at the 
optical layer, lightpath monitoring techniques have been 
previously studied. Specifically, the authors in [15] introduced 
the optical supervisory channel (OSC) technique to monitor 
the BER of a lightpath (single carrier or superchannel) in 
different points along its route by using low-speed (few 
hundreds of MHz) electro-optical components. The OSC 
technique consists in over-modulating the lightpath to be 
monitored with a low modulation index and low-speed On-Off 
Keying (OOK) signal; it allows to estimate the BER of the 
high-speed phase modulated signal (e.g., 100 Gb/s Dual 
Polarization - Quadrature Phase Shift Keying (DP-QPSK)) 
with sufficient accuracy by BER correlation curves calculated 
a priori. We propose to apply a similar concept for 
commissioning testing and failure localization purposes; we 
name it as optical testing channel (OTC). The main difference 
is that, in OTC, the low-speed low-index OOK modulation is 
applied to a continuous-wave laser rather than to a high-speed 
coherent signal. The modulation parameters in OTC are the 
same as in OSC to guarantee accurate BER estimation while 
requiring simple and low-cost hardware for the operator. 

In this paper, we focus on soft failure localization in Elastic 
Optical Networks (EON) during commissioning testing and 
once lightpaths are in operation. We propose the OTC for 
active monitoring during commissioning testing, as well as the 
use of OSAs for passive monitoring. Both monitoring systems 
are based on a hierarchical architecture to support local and 
centralized data analytics [16], where optical nodes and 
network controller are extended with local and global data 
analytics capabilities, respectively. The techniques presented 
in this paper highly depend on the modulation format of the 
lightpaths, so we restrict ourselves to focus specifically on 
QPSK-modulated signals since it is the most common 
modulation format used in medium and long reach telecom 
operator networks. Specifically, the contribution of this paper 
is three-fold: 

• Section II presents our proposals for BER estimation and 
failure localization during the commissioning phase and 
failure localization based on OSAs triggered by the 
detection of excessive BER in a lightpath once it is in 
operation. A node architecture equipped with OSAs and 
OTC modules is proposed and modules running in the 
agent’s node and in the network controller are presented. 

• Section III focuses on designing the OTC system to be 
used during commissioning testing. System designs of the 
transmitter and receiver modules are detailed. Besides, the 

Testing optIcal Switching at connection SetUp time 
(TISSUE) algorithm that received estimated BER and 
localizes failures is presented. 

• Section IV targets at localizing failures affecting a 
lightpath using OSAs. A number of features are proposed 
to characterize the spectrum of a DP-QPSK signal. Those 
features are exploited by machine learning-based 
algorithms to detect degradations and identify failure 
classes. The FailurE causE Localization for optIcal 
NetworkinG (FEELING) algorithm running in the network 
controller uses these modules to localize, classify and 
estimate the magnitude of the failure. 

The discussion is supported by the results from simulation 
presented in Section V. 

II. BEFORE AND IN-OPERATION FAILURE LOCALIZATION 

Two different scenarios for failure localization can be 
defined: i) during customer lightpaths’ commissioning testing 
to ensure the proper lightpath performance before they are 
delivered and enter into operation. Note that since excessive 
BER might lead to SLA violations, BER needs to be checked 
at the reception side and, in the case of excessive BER, the 
source of the errors should be localized as accurately as 
possible. At this point, we assume that transponders are at the 
customer side and that the lightpath is already established in 
the network between ingress and egress nodes at the switching 
level, so active monitoring can be applied by injecting a test 
signal; and ii) once a lightpath is in operation, BER can be 
measured, and BER degradations can be detected in advance 
[1]. Once detected, the cause of failure needs to be localized, 
this time by using passive monitoring techniques, to facilitate 
lightpath rerouting. 

For these scenarios, we propose the use of two monitoring 
systems to be installed in the optical network nodes: a 
redesigned OSC and OSAs. Here, the concept of OSC is 
redefined and renamed as OTC, where the OTCTx module now 
is equipped with a tunable laser and a pseudo-random bit 
sequence (PRBS) generator to create a test signal. Then, the 
OTCRx receives the test signal and estimates the BER (see the 
details of this new OTC in Section III). 

Fig. 1 presents a very simplified diagram of the architecture 
of an optical node, where only one incoming and one outgoing 
links, as well as the local signals being dropped and added are 
represented. The node consists of wavelength-selective-
switches (WSS), optical amplifiers (OA), dispersion 
compensation fiber (DCF) and channel equalizers; on the 
architecture, OTC and OSA monitoring systems are 
highlighted. OTC modules are connected to local WSS in the 
architecture in Fig. 1. Since OTC modules use low-speed 
electronics, its expected cost is very small. In addition, only 
one single OTCTx and one single OTCRx modules per node 
need to be equipped, which although limits the number of 
concurrent test that can be carried out, also limits the number 
of consumed local WSS ports, which has a significant impact  
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Fig. 1. Simplified optical node architecture with OTC and OSA 

monitoring systems 

on the cost of the ROADMs [17]. On the other hand, OSA 
systems are equipped in every outgoing link, so the number of 
OSAs per node equals the degree of the node. In this case, we 
have limited the number of OSAs due to its cost, and although 
failure localization can still be carried out, the granularity of 
the localization would be at the node level. To achieve a finer 
failure location granularity, more OSAs should be equipped, 
consequently increasing the node cost. 

Fig. 2 shows an example of the use of the proposed OTC 
monitoring system for before-operation tests and failure 
localization. One OTCTx is used in the ingress node to 
generate the test signal, and one OTCRx per intermediate and 
egress node is used to estimate the BER. Note that, since the 
lightpath has not been delivered to the customer yet, the client 
signal is not connected to the lightpath neither in the ingress 
nor the egress node at this stage. A module named as Signal 
Quality Estimation (SQE) running in the node’s agent is in 
charge of receiving the measured BER in the local OTC and 
correlate to what the client signal would observe. The TISSUE 
algorithm, running in the network controller, is in charge of 
allocating the OTC modules in the network nodes, set-up the 
local connections from them to the lightpath in the end nodes, 
receive BER estimations and decide whether the tests pass or 
not and the elements that participate in the excessive BER 
estimated. 

Fig. 3 depicts the use of OSAs to localize soft failures once 
the lightpath is in operation. OSAs acquire the whole C-band 
spectrum, and then, data for the portion of the spectrum 
allocated to the lightpath under study is extracted. OSAs 
passive monitoring is carried out in the ingress and every 
intermediate node (but not in the egress one). Two modules 
running in node’s agent are in charge of analyzing the 
spectrum: i) the Feature Extraction (FeX) module first finds 
the set of relevant points in the signal spectrum that are used 
to compute meaningful signal features; and ii) the Signal 
Spectrum Verification (SSV) module that targets at analyzing 
the extracted features to detect misconfigurations, i.e., central 
frequency drift and filtering problems. 

The FEELING algorithm, running in the network controller, 
is in charge of commanding the modules in the nodes and to 
receive a diagnosis, as well as the relevant signal points from 
them to localize the failure and estimate its magnitude. It is 
worth mentioning that FEELING must be able to distinguish 

between actual failures and normal effects that could lead to 
similar evidence, specifically tight filtering effects due to filter 
cascading of a normal signal. FEELING takes advantage of 
the Signal Spectrum Comparison (SSC) module that generates 
a diagnosis of one signal focusing specifically on filtering 
problems. In addition, several magnitude estimation modules 
quantify specific failure effects. 

The next two sections are focused on the design of the 
proposed active and passive monitoring systems. 

III. USE CASE I: COMMISSIONING TESTS AND FAILURE 

LOCALIZATION 

Fig. 4 shows the OTC system design, where a continuous-
wave laser is OOK modulated by a Mach-Zehnder (MZ) 
modulator. A PRBS pattern generator implementable with a 
low-cost FPGA drives the modulator directly (no RF amplifier 
is required since the modulation speed is below 1 GHz with 
low modulation index). At different intermediate nodes, the 
OTC channel is dropped and received with a simple low-
bandwidth photoreceiver (detector plus trans-impedance 
amplifier) connected to a BER tester (this can also be 
implemented in an FPGA). 

Note that, it is necessary for the operator to linearly adjust 
the modulation speed of the OTC channel according to the 
baud-rate of the lightpath requested by the client. Therefore, 
the bandwidth of the OTC system components should be large 
enough to account for the highest possible lightpath baud rate. 
However, this is not a critical aspect since the OTC 
modulation speed can usually be hundreds time slower than 
the client signal. In this section, we assume 25 GBd DP-QPSK 
client signals and OTC speed is 250MHz. A BER conversion 
model (e.g., table or function) translates the OTC measured 
BER value into a client QPSK signal estimated BER (see 
Section V). 

As introduced above, the TISSUE algorithm running in the 
network controller is in charge of collecting the QPSK signal 
estimated BER from each of the intermediate nodes; the SQE 
module is in charge of acquiring the OTC BER and use the 
BER conversion model to obtain the estimated BER. 

Initially, TISSUE algorithm (Table I) allocates the OTC 
modules in the network nodes along the route of the lightpath 
and sets up the needed connections between the OTC modules 
and the lightpath so the OTCTX module injects the test signal 
in the ingress node and all the OTCRX modules get the test 
signal to measure BER (lines 1-2 in Table I). Next, the QPSK 
BER estimated values are collected from the SQE modules, 
and theoretical BER values are computed based on OSNR 
values [18] (lines 3-5). 

Finally, in order to determine the existence of a failure, we 
compute the difference between the slopes of both estimated 
and theoretical BER in each span; if the slopes difference is 
above a maximum value, a failure has been detected in such 
span (lines 6-11). The list of spans in failure is eventually 
returned (line 12). 
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TABLE I TISSUE ALGORITHM 

INPUT lightpath 
OUTPUT FailureList 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

<otcTx, OTCRx> ← allocateResources (lightpath) 
setupConnections (lightpath, {otcTx} ⋃ OTCRx) 
for each r ∈ OTCRx do: 

BER.estim[r] ← getEstimatedBER(r) 
BER.theo[r] ← computeTheoBER(r.node, lightpath) 

failures ←∅ 
for i = 1..|OTCRx|-1 do: 

estimSlope ← compSlope(BER.estim[i],BER.estim[i+1]) 
theoSlope ← compSlope(BER.theo[i], BER.theo[i+1]) 
if estimSlope - theoSlope > α then 

failures ←failures ⋃ {<i, i+1>} 
return failures 
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Fig. 4. OTC system design: a) OTC transmitter and b) OTC receiver 

IV. USE CASE II: IN-OPERATION FAILURE LOCALIZATION 

In this section, we focus on the use of OSAs to localize 
failures once the lightpath is in operation. Fig. 5a shows an 
example of 100Gb/s DP-QPSK modulated optical spectrum 
acquired by an OSA with 625 MHz granularity. In general, 
QPSK optical signals present a flat spectral region around the 
central frequency, sharp edges, and a round region between 
the edges and the central one. When the signal is properly 
configured, its central frequency should be around the center 
of the assigned spectrum slot to avoid filtering effects, and it 
should be symmetrical with respect to its central frequency. 
On the contrary, in the case of laser drift, the central frequency 
of the signal would be shifted with respect to the assigned slot, 
it would be asymmetrical in the case of filter shift, and the 
edges get noticeably rounded in the case of tight filtering. 

In order to detect the above distortions, the FeX module 
primarily pre-processes the optical spectrum of the signal, 
which formally consists of an ordered list of frequency-power 
(<f, p>) pairs. The first pre-processing step consists in 
equalizing power, so the maximum power to be 0 dBm. Then, 
the derivative of the power with respect to the frequency is 
computed. Fig. 5b illustrates the derivative of the example 
optical signal; note that sharp convexity is observed close to 
the edges. 
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Fig. 5. Relevant signal points 

After pre-processing, the FeX module characterizes the 
mean (μ) and the standard deviation (σ) of the power around 
the central frequency (fc±Δf), as well as a set of primary 
features computed as cut-off points of the signal with the 
following power levels: i) equalized noise level, denoted as sig 
(e.g., -60dB + equalization level); ii) edges of the signal 
computed using the derivative, denoted as ∂; iii) a family of 
power levels computed with respect to μ minus kσ, denoted as 
kσ; and iv) a family of power levels computed with respect to 
μ minus a number of dB, denoted as dB. Each of these power 
levels generates a couple of cut-off points denoted as f1(·) and 
f2(·). In addition, the assigned frequency slot is denoted as 
f1slot, f2slot. These relevant points (hereafter denoted as X), are 
used as input for class identification and magnitude estimation 
modules. 

Although relevant points have been computed from an 
equalized signal, note that signal distortion due to filter 
cascading effect has not been corrected yet. As previously 
introduced, this effect might induce to a wrong diagnosis of a 
filter problem for a normal signal. In order to overcome this 
drawback, we apply a filter mask to the measured relevant 
points to correct such distortions. Filter masks can be easily 
obtained by means of the theoretical signal filtering effects or 
experimental measurements taken for a distinct number of 
cascaded filters. Every time FEELING asks for diagnosis at a 
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given intermediate node of a lightpath, it sends the specific 
filter mask to the node to correct the relevant points. 

Other features are computed as linear combinations of the 
relevant point focus on characterizing a given optical signal; 
they include: i) bandwidth, computed as bw(·)=f2(·)-f1(·); ii) 
central frequency, computed as fc(·)=f1(·)+0.5*bw(·); and iii) 
symmetry with respect to a reference (frequency slot or 
derivatives), computed as sym(·)-ref=(f1(·)-f1ref)-(f2ref-f2(·)). 

Once the FeX module computes the relevant points and all 
the features of the signal, the SSV module uses them to 
generate a diagnosis, which consists in: i) a predicted class 
among the following options: ‘Normal’, ‘LaserDrift’, 
‘FilterFailure’; and ii) a subset of relevant signal points 
(X’⊆X) for the predicted class. SSV module includes thus a 
multiclass classifier in the form of a decision tree that receives 
as input a set of features for a signal and returns the predicted 
class. Basically, the decision tree contains a number of 
decision rules to map specific combinations of feature values 
to classes. Each decision rule is a sequence of binary tests 
starting from the root node to a leaf node that characterizes 
one and only one class. 

Decision trees are easily generated (trained) from a training 
dataset containing labeled samples (sets of features and their 
class) [19]. Notwithstanding, to avoid overfitting, trees need to 
be limited in size in terms of number of decision rules without 
significantly sacrificing accuracy. An approach to limit tree 
size is to force the minimum number of samples that are in a 
leaf node. Table II illustrates the proposed algorithm to that 
end; it receives a dataset that is firstly balanced by replicating 
samples for the less frequent classes, and it is then randomly 
split into training and testing (lines 1-2 in Table II). 

After few initializations (lines 3-5), an iterative procedure is 
executed to fit a tree with a minimum number n of samples per 
leaf between nmin and nmax. For every n, a decision tree is 
fitted from the training dataset and the error, defined as wrong  
 

TABLE II SSV TREE GENERATION ALGORITHM 

INPUT dataset, nmin, nmax 
OUTPUT tree 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 

dataset←balanceClassesByReplication(dataset) 
<training,testing>←randomSplit(dataset) 
N←Ø 
minDiff←∞ 
minError←∞ 
for n=nmin..nmax do 

tree ← fitTree(training, n) 
errorTesting ←predict(tree, testing) 
errorTraining ←predict(tree, training) 
if errorTesting<minError then  

N←n 
minError←errorTesting 
minDiff←|errorTraining-errorTesting| 

else if errorTesting==minError then 
diff←|errorTraining-errorTesting| 
if diff≤minDiff then  

N←n 
minDiff←diff 

return fitTree(dataset, N) 
 

classified samples over the total number of samples is 
computed for both training and testing datasets (lines 6-9). 
The best number of samples (N) is updated if error from 
testing dataset has been reduced (lines 10-13) or, in case 
obtaining the minimum error obtained so far, the difference 
between error from training and from testing is reduced (lines 
14-18). The tree fitted with the input dataset and N is 
eventually returned (line 19). 

Similarly as the SSV module, the SSC module generates a 
diagnosis of one signal focusing specifically on filtering 
problems; it classifies signals into three classes: Normal, 
FilterShift, TightFiltering. SSC consists of a hierarchy of two 
binary classifiers: the first one predicts whether the captured 
optical spectrum is Normal or has suffered from filter-related 
failure. In the case of predicting a failure, a second binary 
classifier is used to predict whether the failure is due to 
FilterShift or TightFiltering. 

The decision-making units of SSC module are realized as 
supervised support vector machine (SVM) binary classifiers 
exploiting ith order polynomials as kernel function [20]. In 
order to obtain an SVM model, a similar approach to the one 
for the decision tree in the SSV module was followed, where 
the loop iterated on both, the cost of misclassifying C and the 
degree of the polynomial kernel. The SVM generation 
algorithm returns the SVM with the optimal parameter 
configuration. 

When a filter related failure is detected, either a Filter Shift 
Estimator (FSE) or a Filter Tightening Estimator (FTE) is 
called to estimate the magnitude of the failure as a function of 
few selected features; linear regression for the magnitude  
 

TABLE III FEELING ALGORITHM 

INPUT lightpath 
OUTPUT {<node, class, magnitude>} 

1: 
2: 
3: 
4: 
5: 
6: 

 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 

 
21: 
22: 
23: 

ingress ← lightpath.getNodeFromRoute (1) 
lastInterm ← lightpath.getNodeFromRoute (-2) 
FM ← getFilterMasks(lightpath) 
diagIngress ← getFailureDiagnosis (ingress, FM (1)) 
diagLast ← getFailureDiagnosis (lastInterm, FM (-2)) 
if diagIngress.class = diagLast.class AND 

diagIngress.class = Normal then 
return {<1, Normal, ->} 

if diagIngress.class =LaserDrift then 
magn← LDE(diagIngress.X) 
return <1, LaserDrift, magn> 

XNodeChange ← diagIngress.X 
diagChange = <class, magn> ←SSC (diagIngress.X) 
if diagChange.class<> normal then 

FailureSet←<1, diagChange> 
else FailureSet ← Ø 
for i=2..lightpath.RouteLength()-1 do 

node_i ← lightpath.getNodeFromRoute (i) 
Xi← getSignalPoints (node_i) 
diagNode_i ← SSC (Xi) 
if diagNode_i.class <> diagNodeChange.class OR  

diagNode_i.magn - diagNodeChange.magn > α then 
XNodeChange ← Xi 
FailureSet ← FailureSet U {<i, diagNode>} 

return FailureSet 
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estimators was used since both, magnitudes and features take 
real values. In order to find the proper set of features, we 
apply a stepwise approach that aims at finding the model with 
the optimum balance between accuracy and number of 
coefficients (i.e., features) in terms of the Akaike Information 
Criterion (AIC) [20]. 

Finally, the FEELING algorithm that uses the above-
defined modules is detailed in Table III; recall that FEELING 
is called upon the detection of excessive BER at the reception 
side of an optical signal. The algorithm first calls FeX and 
SSV modules in the ingress and last intermediate extended 
nodes to perform signal verification and obtain a diagnosis 
(lines 1-5 in Table III). In the case that the diagnosis of both 
nodes is normal, FEELING ends with no failure detected 
(lines 6-7). Otherwise, in the event of laser drift diagnosis at 
the ingress, the Laser Drift Estimator (LDE) module is run to 
measure failure magnitude (lines 8-10); for LDE modeling, we 
considered linear regression. 

In the case of a different diagnosis, FEELING starts a 
procedure to detect filter related problems at intermediate 
nodes using the SSC module to compare diagnosis and 
magnitudes between nodes in the route of the lightpath. This 
process starts with the diagnosis at the ingress node that it is 
used as the initial reference node (lines 11-14). Then, the 
diagnosis of every intermediate node is compared against the 
one of the reference changing node and failure set is updated if 
either a new filter failure is detected or the magnitude 
increased above a certain threshold (lines 15-22). After 
processing all intermediate nodes, the list of failures detected 
is eventually returned (line 23). 

V. RESULTS 

This section reports the obtained results from simulating 
scenarios for commissioning testing and in-operation failure 
localization. 

A. Optical Testing Channel. 

Regarding commissioning testing, we performed 
Montecarlo simulations with a 250Mb/s OOK channel 
transmission with the OTC scheme described in Section III. In 
the simulation, the signal propagates through 1000km of 
single mode fiber, which consists of ten 100km-spans, a set of 
DCF to mitigate the chromatic dispersion effect, and a set of 
EDFA amplifiers. The fiber attenuation coefficient is 
0.2dB/km, the noise figure of EDFAs is 4dB, and the fiber 
nonlinear coefficient is 1.37 (W Km)-1. 

The fiber propagation is simulated using the split-step 
method, with a step size of 0.1 km. To maintain the BER 
lower than 3.7×10-3 at 1000 km (7% FEC threshold), the 
launched power is set to -17dBm. In the OTCRX, the low-
speed photo detector has 1GHz bandwidth. We assume that 
amplified spontaneous emission (ASE) noise dominates the 
noise spectrum and other noises or distortions are negligible. 

To study the correlation between OTC measured BER and 
QPSK signal estimated BER, we simulated the OTC scheme, 

as well as 25GBd QPSK signal and measured the BER after 
every span; Fig. 6a plots the obtained BER relation. It can be 
shown that there is an almost near linear relationship between 
the BER of the OTC channel at 250Mb/s and the BER of a 
QPSK channel. In view of the high correlation, a simple piece-
wise linear model can be used to convert from the measured 
OTC BER to the estimated QPSK signal BER. Such model is 
stored in every SQE module and used every time the TISSUE 
algorithm requests BER estimation. 

At lightpath commissioning testing, the TISSUE algorithm 
requests SQE modules along the route of the lightpath to 
obtain BER estimations and compares them against 
theoretically computed values. Fig. 6b plots an example of 
theoretical and estimated BER for the last seven 100km spans 
of the simulated 10-span scenario (the first three spans are not 
shown since their BER is lower than 10-7). As observed, 
values are very close (about half decade difference in BER 
values), proving that the OTC scheme is an effective testing 
technique for operators to check the quality of a new lightpath, 
as well as to localize spans with excessive BER. 

Finally, to evaluate the TISSUE algorithm, we added 2dB of 
noise after span #5. Fig. 6c plots the estimated QPSK BER 
and the theoretical BER for the last seven spans. TISSUE 
localizes the failure after noticing the large estimated BER 
slope compared to the theoretical one. 

B. Optical Spectrum Analyzer. 

Regarding in-operation failure localization, we set up the 
scenario in VPIPhotonics illustrated in Fig. 7. In the 
transmitter side, a 30 GBd DP-QPSK signal is generated (120 
Gb/s lightpath). The signal passes through 5 single mode fiber 
spans. After each span, an optical amplifier compensates for 
the accumulated attenuation of the fiber. Each node is 
modeled as a single optical filter with a 2nd order Gaussian 
transfer function emulating optical switching functionality 
performed by several WSSs; filters bandwidth is set to 37.5 
GHz, leaving 7.5 GHz as a guard band for the lightpath. 
Finally, the DP-QPSK signal ends in a coherent receiver that 
compensates for the impairments introduced throughout the 
transmission. Emulating the optical node architecture in Fig. 1, 
coarse-granular OSAs are equipped after every filter to 
analyze the optical spectrum. OSAs have been configured with 
a granularity of 625 MHz, i.e., every 37.5 GHz frequency slot 
is represented by 60 <f, p> pairs. 

A number of simulations have been carried out to produce a 
database of samples belonging to different failure classes 
(including normal operation): i) for LaserDrift failures, a 
frequency shift is applied to the laser frequency; the frequency 
of the local oscillator at the Rx side is configured accordingly; 
ii) for FilterShift failures, a frequency shift is applied to the 
central frequency of filters; iii) TightFiltering failures are 
emulated by modifying the bandwidth of the filter. Regarding 
failure magnitudes, although we simulated a wide range of 
them, we considered as actual failures those with a magnitude 
higher than a certain threshold, while samples below the  
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Fig. 6. a) OTC vs. 25GBd QPSK BER correlation. b) Estimated QPSK BER vs. theoretical QPSK BER. c) Degraded BER and failure 
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threshold were re-labeled as normal. Specifically, thresholds 
were set to 1.5GHz for LaserDrift, 3 GHz for FilterShift, and 
32 GHz for TightFiltering. Recall that TightFiltering 
magnitude increases when filter bandwidth decreases. 

It is worth mentioning that the TightFiltering failure needs 
to be distinguished from filter cascading. Fig. 8 shows the 
evolution of features bw-3dB and bw-6dB for a DP-QPSK signal 
in terms of the number of filters that the signal passes through 
when all the components operate properly. As shown, 
bandwidth constantly decreases after the 2nd filter, which 
anticipates the difficulty to correctly distinguish between the 
Normal class and TightFiltering failure in some scenarios. 

In view of the above, the training of classifier and 
magnitude prediction modules has been carried out with a 
shorter testbed (only two spans and filters between Tx and Rx) 
to avoid mispredicting filter cascading as filter failure. 28 
distinct configurations of failure and magnitude have been 
simulated, generating up to 500 different samples for training 
and testing. Each sample consists in 56 different features 
obtained at several power levels. 

Let us first focus on SSV tree generation. Recall that SSV 
classifies among three classes: Normal, LaserDrift, and 
FilterFailure. After executing the algorithm in Table II, the 
optimal tree (with N=15) consists of three leaf nodes, each 
characterized by a decision rule that depends on two features: 
bw-3dB and bwƌ. Average and maximum classification errors 
(in terms of the proportion of wrong decisions) were 3% and 
9%, respectively. Both Normal and LaserDrift classes are 
always well predicted, whereas 9% of FilterFailure problems 
are classified as LaserDrift. In light of these results, we can 
conclude that SSV provides accurate failure detection and 
identification. 

Regarding SSC, the first classifier in charge of identifying 
between normal and filter failures is based on the same 
features used by SSV and provides no classification error. 
This result is the key for the failure localization process since 
we can conclude that SSC provides perfect localization of a 
failed filter in the absence of filter cascading effects. The 
second classifier, used upon the localization of a failure to 
distinguish between FilterShift and TightFiltering, uses also 
feature sym-3dB and returns a classification error around 18%. 
Although this error is not negligible, it is worth noting that its 
negative impact is small since filter failure identification is not 
as crucial as filter failure localization. Finally, magnitude 
predictors LDE, FTE, and FSE were fitted with different 
combinations of the above-mentioned features to provide 
highly accurate linear models with average errors below 5%. 

Once classifiers and predictors have been successfully 
trained and validated, let us evaluate the performance of 
FEELING in the setup of Fig. 7. The behavior of filter 
bandwidth degradation due to filter cascading shown in Fig. 8 
has been used to set up the filter mask applied to every 
intermediate node before running failure diagnosis. As for 
previous results, we carried out simulations for all failures and 
several magnitudes, considering only one failure per 
simulation. 

For the case of LaserDrift, FEELING is able to localize the 
failure with 100% of accuracy, which is a consequence of the 
high accuracy of SSV and the fact that in our simulations, the 
transmitter was collocated with the ingress node, and thus the 
signal arrives without any filter cascading effects. For the case 
of filter related failures, Fig. 9 and Fig. 10 illustrate 
localization accuracy for FilterShift and TightFiltering, 
respectively. Accuracy in terms of the proportion of correct 
localizations is provided as a function of the magnitude of the  
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Fig. 9. FEELING performance for FilterShift failure localization 
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Fig. 10. FEELING performance for TightFiltering failure localization 

failure (Fig. 9a and Fig. 10a) for two distinct cases: with and 
without applying filter mask. The conclusion is that, as soon 
as the failure magnitude increases, localization accuracy also 
increases. Additionally, it is seen that the accuracy is higher 
when the filter mask is used. For FilterShift higher than 5GHz 
and TightFiltering smaller than 28 GHz, overall accuracy 
reaches 100% when filter mask is applied, in contrast to the 
90% obtained without filter masks. 

Although high enough overall localization accuracy is 
obtained without filter mask, Fig. 9b and Fig. 10b clearly 
show the negative effects of filter cascading for failure 
localization. The figures illustrate the accuracy as a function 
of the number of cascaded filters before the failure. In the case 
of filter shift and filter tightening, the values are obtained for 
magnitudes higher than or equal to 6 GHz and lower than or 
equal to 27.5 GHz, respectively. As it can be observed, for the 
case without mask, the localization accuracy decreases sharply 
when the lightpath passes through more than 3 filters. On the 
other hand, filter mask correction compensates filter cascading 
effects and allows 100% of localization accuracy in every of 
the filters in our setup. 

Finally, it is important to recall that FEELING is triggered 
upon the BANDO algorithm in [1] after detecting excessive 
BER in the reception of a lightpath. The calibration of 
BANDO includes BER thresholds that are setup in order to 
perform prompt and even anticipated BER degradation. 
Assuming a BER increase due to a gradual degradation of a 
filter, Fig. 9c and Fig. 10c are provided to illustrate the 
relation between BER change detection thresholds and failure 
localization. Those figures depict the simulated BER as a 
function of failure magnitude. For illustrative purposes, let us 

imagine that, due to two different configurations, BANDO 
detects excessive BER at 8E-05 and 5E-04. Without entering 
into details, the former could correspond to a BER threshold 
violation anticipation while the latter could represent an actual 
threshold violation. A BER equal to 8E-05 could correspond 
to a degraded filter shifted around 4 GHz or narrowed until 
32GHz, a failure that is localized with an accuracy around 
90%. On the other hand, BER equal to 5E-04 is obtained for 
failures whose magnitude is large enough to localize them 
without localization errors. Hence, modules for BER 
degradation and failure identification and localization must be 
configured with a global perspective to achieve optimal 
overall performance. 

VI. CONCLUDING REMARKS 

Proper operation of the network components is a key factor 
to provide the expected quality of service to the end-users and 
avoid violating service level agreements (SLA). Therefore, 
predicting upcoming failures that can disrupt the network 
operation, by continuous monitoring of the active lightpaths is 
of great importance. In this paper, we proposed two 
monitoring systems to intelligently identify and localize 
failure during commissioning testing and lightpath operation. 

In the case of commissioning testing, the low cost and 
complexity OTC system was proposed and validated as a 
promising technique for estimating the BER of a 100Gb/s DP-
QPSK modulated lightpath. Simulations showed that the OTC 
the estimated BER can be used for testing and failure 
localization. 

For the case of lightpath operation, a machine-learning 
based identification and localization platform (called 
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FEELING) was proposed, taking advantage of continuous 
monitoring of the optical spectrum using cost-effective OSAs 
installed in the optical nodes. FEELING predicts whether a 
component is failed and, in the case of failure, estimates the 
magnitude of the failure. In this work, we focused on three 
classes of failures: LaserDrift, FilterShift, TightFiltering. In 
order to evaluate the accuracy of FEELING, we performed an 
extensive set of simulations, and the results showed that 
FEELING identifies/localizes LaserDrift with 100% of 
accuracy. In the case of filter related failures, FEELING can 
identify/localize the failure with the accuracy above 90%.  
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