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Abstract—Linear signal processing algorithms areeffective in
dealing with linear transmission channel and linear signal detec-
tion, whereas the nonlinear signal processing algorithms, from the
machine learning community, are effective in dealing with nonlin-
ear transmission channel and nonlinear signal detection. In this
paper, a brief overview of the various machine learning methods
and their application in optical communication is presented and
discussed. Moreover, supervised machine learning methods, such
as neural networks and support vector machine, are experimental-
lydemonstrated for in-band optical signal to noise ratio estimation
and modulation format classification, respectively. The proposed
methods accurately evaluate optical signals employing up to 64
quadrature amplitude modulation, at 32 Gbd, using only directly
detected data.

Index Terms—Machine learning, neural networks, optical com-
munication, performance monitoring, support vector machines.

I. INTRODUCTION

THE field of machine learning offers many powerful tech-
niques to: estimate parameters from noisy measurement

data, determine complex mapping between input and output
data, infer probability distributions, predict the output based on
the past input data and perform classification [1], [2]. Choosing
the right machine learning algorithm strongly depends on the
problem that needs to be solved.

The challengesassociated with the optical communication is
that, the optical fibre channel is nonlinear, due to the Kerr non-
linearity, and also the optical signal detection may be nonlin-
ear as in the case of direct detection. However, many of the
tasks addressed by the machine learning community are of the
nonlinear nature and we therefore believe that machine learn-
ing techniques may prove useful to combat optical fibre chan-
nel nonlinearities and also extract useful information about the
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optical signal after direct detection. An overview of the ma-
chine learning methods applied to optical communication, to-
gether with the references is shown in Fig. 1. In the following, a
brief description of the methods and their application to optical
communication is discussed.

Recently, several methods within the framework of nonlinear
state-space based Bayesian filtering, (extended Kalman and par-
ticle filter), have been employed for time-varying parameter es-
timation such as: amplitude and phase noise, cross-polarization
and cross-phase modulation induced polarization scattering and
polarization mode dispersion [3]–[8]. The advantages of the
state-space based Bayesian filtering for time-varying parame-
ter estimation are that: 1) the framework is very well suited
for joint parameter estimation, 2) it allows for the inclusion of
the underlying physics of optical components and optical fibre
channel into the estimation algorithms and 3) it allows for more
complicated models of the time-varying parameters.

Machine learning methods have also been employed for opti-
cal performance monitoring for optical communication systems
employing advanced modulation formats. It has been shown
that various algorithms such as: neural networks, k-means, vari-
ational Bayesian methods for mixture models and statistical
methods using cumulants, can be used to perform blind modu-
lation format classification [9]–[12]. Neural networks have also
been employed for optical channel parameters estimation such
as: chromatic dispersion, differential group delay, baud rate and
optical signal to noise ratio (OSNR) [13]–[15]. An interesting
application of well-known and widely used machine learning al-
gorithms such as independent and principal component analysis
have also been demonstrated for signal demodulation, modula-
tion format and bit rate identification [12], [16], [17].

One of the main applications of the machine learning
techniques is to perform optimum classification. The optimum
classification directly translates into optimum symbol detection
for the optical communication systems. For the case of
memoryless nonlinearity such as: nonlinear phase noise, I/Q
modulator and driving electronics nonlinearity, Euclidean
distance metric, resulting in linear decision boundaries, is no
longer optimum. For those particular cases, optimum symbol
detection and thereby decision boundaries, can be obtained
by using machine learning techniques such as: support vector
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Fig. 1. An overview of the various machine learning methods applied to optical communication.

machines (SVM), kernel density estimator and Gaussian
mixture models [18]–[22].

Finally, for the nonlinearity mitigation, factor graphs and mes-
sage passing algorithms have been applied to include the effects
of noise in the digital backpropagation (DBP) and thereby per-
form optimum symbol detection. This has resulted in significant
gains compared to the deterministic DBP [23].

In this paper, the application of machine learning techniques
for optical performance monitoring are investigated. Optical
performance monitoring is vital to ensure robust and reliable
networks [15], [24], [25]. The modulation format and the
OSNR are key parameters for assessing the performance of
optical transmission links. In-band OSNR estimation is espe-
cially important in next generation wavelength division multi-
plexed systems where the channel spacing approaches signal
baud rate. To this end, systems based on back-to-back transmis-
sion characteristics and pilot sequences have been demonstrated
[24]–[26]. However, such approaches require complete demod-
ulation and hence are too complex and costly for mid-span
monitoring points. One promising approach in this area is to use
intensity information coupled with advanced signal processing
to extract the relevant information using only one photodiode
and ADC [15], but this has yet to be demonstrated for polar-
ization division multiplexed signals or higher-order quadrature
amplitude modulation (QAM) formats.

To address those challenges classification scheme based on
(SVM) is investigated for modulation format recognition and
nonlinear regression technique, employing neural network, is
investigated for in-band OSNR monitoring. Both of the tech-
niques are applied to directly detected polarization multiplexed
quadrature amplitude modulated optical signals. In short, this
means that modulation format can be classified and in-band
OSNR can be estimated by employing a single photodiode fol-
lowed by an analogue-to-digital converter. It is envisioned that
the proposed techniques can be very useful for mid-span moni-
toring systems.

The remainder of this paper is organized as follows. In
Section II, the main principles on how to perform modula-
tion format classification and in-band OSNR monitoring from
directly detected polarization multiplexed QAM modulated
optical signals are outlined. Moreover, main operating principles
behind neural networks and SVM are presented. The theory on
how to optimize neural networks is briefly discussed as well. In
Section III, the experimental set-up is presented and described.
In Section IV, the effectiveness of SVM and neural networks for
modulation format classification and in-band OSNR estimation
is investigated using the experimental results. The conclusions
of the investigations are summarized in Section V.

II. PERFORMANCE MONITORING USING

INTENSITY INFORMATION

The reason why the focus is on the direction detection and
thereby intensity information is because if OSNR monitoring is
going to be widely employed along the link then the monitoring
unit needs to be relatively simple and cost effective. We would
like to avoid solutions that rely on coherent detection and full
signal demodulation as this is quite complex and costly. One
of the simplest approaches to perform OSNR monitoring is
therefore to employ a single photodiode and then estimate the
OSNR directly after the photodetection without prior signal
demodulation.

In this paper, supervised learning, based on SVM and neural
networks, is considered. This means that the machine learning
algorithms need to infer a mapping function from the labeled
training data. The training data consists of training examples
pairs, each containing input features and targets (modulation
format and OSNR). The crucial part is to extract the relevant
features, from the directly detected optical signal, that are rep-
resentative for the target data. For instance, we need to extract
the features that vary as the modulation format and OSNR are
varied.
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Fig. 2. Diagram showing the experimental back-to-back setup. The power eyediagrams produced from photodetection are sampled to extract minimum and
maximum variance features (A and B, respectively) for signal evaluation.

As already states, the modulation format classifier and
OSNR estimator operate on directly-detected (DD) data. This is
illustrated along with the complete experimental setup, in Fig. 2.
From the power eyediagram after the photodetector, we extract
eight features. The OSNR estimator only considers one feature
but the modulation format classification considers all of them.
The mean values and variances of the eye diagram at points A
and B are four of the eight extracted features used by the machine
learning blocks. Obtaining the maximum and minimum variance
has been performed using a simple method based on a sliding
window principle: The signal was upsampled to 10 samples/
symbol and split up into 50 frames consisting of 80 000 sym-
bols, where the minimum and maximum variance of each frame,
along with the mean was computed. Averaging over the results
from all the frames obtains an approximation of the variance
at the maximum and minimum eye opening points. The four
additional features, only used by the modulation format classi-
fier, are another mean value, the difference and the ratio of the
variances of the two distinct eyediagram positions as well as a
last mean value of the two positions’ mean values. The various
features are chosen to vary with and, therefore, be dependent
on different modulation formats or OSNRs. Both methods fol-
low the same general structure: 1) sample the eyediagram of
different modulation formats or OSNRs and extract dependent
features, 2) train the classifier or the neural network on various
instances of the extracted features for the given modulation for-
mat or OSNR, and 3) use the trained classifier or neural network
to classify the modulation format or predict the OSNR of new
observed eyediagrams/features.

The task of the classifier is to learn a mapping function from
the extracted features to the used modulation format. During
training, we pass several 8-D input vectors of features, paired
up with their corresponding target class, here the modulation
format, to a linear support vector machine classifier. The goal
is not to reproduce the mapping of the just mentioned training
cases, but let the SVM generalize the mapping between input
vector of features and modulation format. Hence, the goal is to
correctly classify the modulation format for new input vectors of
yet unseen eyediagrams. For this reason, validation is performed
on traces that are not used during the training phase.

The OSNR estimator, unlike the classifier, is designed to learn
a continuous mapping function between the input feature and

the OSNR. It also differs in that only one feature, the minimum
variance (A), is used. To accomplish this, several instances of
this feature with its corresponding OSNR are used to train the
neural network. Comparable to the classification, which predicts
the modulation format, the trained neural network attempts to
predict the correct OSNR for new inputs extracted from so far
unseen eyediagrams.

A. Neural Networks

The structure of the employed neural network to perform
the nonlinear regression is shown in Fig. 3. The type of net-
work presented in Fig. 3 is a feed-forward neural network, also
known as the multilayer perceptron as described by [1]. The
neural network can be seen as a series of functional transfor-
mations of the input, some of which are performed by non-
linear activation functions h(·). For the considered case, the
non-linear activation function is tanh(·). The feed-forward,
one hidden layer, neural network shown in Fig. 3 can be
expressed as:

y(x,w) =
3∑

j=1

w
(2)
1j h(w(1)

j1 x) (1)

where x is the input variable, i.e. variance extracted from the
eyediagram and w = [w(1)

11 , w
(1)
21 , w

(1)
31 , w

(2)
11 , w

(2)
12 , w

(2)
13 ] is the

weight vector. The superscript of each weight denotes the layer
of the network. The weights are adaptive and to solve the re-
gression problem, they have to be adjusted to fit the data during
a training phase. Since this function depends on adaptive pa-
rameters, the transformation will also be adaptive even though
the function itself is fixed.

To find the optimal weight vector w, the neural network
has to be trained in a supervised manner. For the training of
the neural network, a dataset S of N observations is used:
S = {(σ2

n , OSNRn )|n = 1, ..., N}. For the considered case, the
training points consist of a variance value (input) and a corre-
sponding known OSNR values (target). Since the neural net-
work is used for regression, we will assume that the target
values tn = OSNRn have a Gaussian distribution with an
input dependent mean given by the output of the neural net-
work. This means that the output of the neural network can be
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Fig. 3. Illustration of the application of the neural network for OSNR estimation. For the upper right figure, case A and B represent different sampling points in
the eyediagram used to extract the variance for the back-to-back case and after 250 km of uncompensated transmission. y: non-linear mapping function that needs
to be inferred from the training data.

expressed as:

tn = y
(
σ2

n ,w
)

+ ε (2)

where ε is a zero mean Gaussian random variable with vari-
ance β−1 . By assuming that the target values tn have Gaussian
distribution, an analytical expression for the likelihood func-
tion of the target variables is available. The availability of the
likelihood function eases the implementation of the learning
algorithm to optimize the network parameters w. However, the
distribution after the photodetection is best described by non-
central chi distribution and in order to approach the Gaussian
distribution traces are superimposed. According to the central
limit theorem, the distribution after direct detection approaches
the Gaussian distribution as the number of superimposed traces
tend to infinity. The results presented in the Section IV which
show the ability to accurately estimate the OSNR indicate that
we are well within the limits of the approximation.

Considering a data set of inputs X = [σ2
1 , ..., σ2

N ] and targets
t = [t1 , ..., tn ], the likelihood function of the neural network
parameters, w, is expressed as:

p(t|X,w, β) =
N∏

n=1

N (
tn |y

(
σ2

n ,w
)
, β−1)

=
N∏

n=1

1√
2πβ−1

e−
β
2

(
y (σ 2

n ,w
)
−tn

)2

. (3)

To optimize the network parameters, w, we need to maximize
the likelihood function consisting of N independent, identically
distributed observations. From equation (3), the negative log

likelihood function takes the form:

− ln p(t|X,w, β) =
β

2

N∑

n=1

{
y
(
σ2

n ,w
) − tn

}2

− N

2
ln β +

N

2
ln (2π) (4)

Maximizing the negative likelihood function is equivalent to
minimizing the sum-of-squares error function given by:

E(w) =
1
2

N∑

n=1

{
y
(
σ2

n ,w
) − tn

}2
. (5)

Since it is not possible to find the optimal solution to the error
function with an analytical expression, the solution is found
iteratively using the gradient descent technique which is built on
the idea of error backpropagation as described by [1]. When the
training phase has been completed, the neural network has been
optimized to the training data, and can now estimate OSNR from
variance measures. It should be noted that the number of training
points is vital to the accuracy of the regression solution, and to
avoid severe over-fitting. The number of training points should
be taken into consideration when determining the complexity of
the neural network.

B. Support Vector Machine

SVM became popular solving problems in classification and
regression due to it’s kernel-based algorithms that have a sparse
solution. Kernel methods use kernel functions to express sim-
ilarities over all pairs of raw input data. This results in a large
training matrix consisting of metrics of similarities between all
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Fig. 4. Classification results shown in data input space consisting of feature 5 and 8, corresponding to the mean and the absolute difference in variance
respectively. Shown by triangles are classification errors preformed by a trained linear SVM. Feature space is conceptually illustrated with a probable decision
boundary between two arbitary classes.

input data points. Usually, kernel-based methods store the entire
training matrix for predictions and classification of new inputs,
SVM however only store a subset and these are known as support
vectors. For this particular property SVM is considered compu-
tational efficient compared to many other algorithms that take
use of kernel functions, as making predictions based on a large
training matrix can be computationally infeasible. In general,
the SVM is based on a geometric mindset which aims to maxi-
mize the margin. The margin is a measure of how well classes
can be separated by a given decision boundary. The optimiza-
tion problem of SVM consists of finding a decision boundary
where the margin is maximized i.e. where the classes are most
separated.

Being a kernel-based method, SVM seeks to take advan-
tage of the so called “kernel trick” which enables operation
in high-dimensional feature space without the computational
cost of computing the actual coordinates. Typically, the ker-
nel function is given as an inner product in a feature space,
k(x,x′) = φ(x)T φ(x′) where nonlinear feature space mapping
is φ(x) and x is an input vector and φ(·) is a mapping function.
The Kernel trick essentially is to define the kernel k(x,x′) in
terms of original input vector x without even defining or even
knowing, the transformation function φ(·). The task is then to
find the kernel function k(x,x′). For that purpose, in this paper,
K-fold was used as cross-validation, more specifically we used
a 5-fold split on a data set of the size 53 × 4. This results in
32 training points per fold. So in short, the results are obtained
training 5 different kernels (5-fold cross-validation) and pick-
ing the best preforming one which for the considered case is
a linear kernel. The illustration of SVM for modulation format
classification is shown in Fig. 4.

The main idea behind Fig. 4 is to illustrate the feature space
for modulation format classification. The reason why we use
features 5 and 8 is because the classes (modulation formats)
are most distinguishable for those two features in the two

dimensional space. The reviewer is correct that by only employ-
ing those two features (5 and 8) it is not possible to distinguish
between 16 QAM and 64 QAM. Increasing the features space
to three dimensions does not help either and that was the reason
why we did not plot higher dimensional feature space. It is only
by employing all 8 features that the modulation formats become
distinguishable.

III. EXPERIMENTAL SETUP

To verify the proposed method, an optical channel is set
up as illustrated in Fig. 2. An external cavity laser (100 kHz
linewidth) is used as a transmitter. The laser output is modu-
lated by an electrical signal using an I/Q optical modulator. The
3-dB bandwidth of the I/Q modulator is 22 GHz. The electrical
driving signal for the I/Q modulator is generated by an electrical
arbitrary waveform generator with 64 GS/s and 20 GHz band-
width. The symbol rate is 32 Gbd with 2 samples per symbol.
Polarization multiplexing of the I/Q modulated signal is emu-
lated by introducing a delay. Noise is added to the generated
modulated PDM signal using an EDFA and an optical coupler.
One output of the coupler is sent to a photodiode, sampled at
80 GS/s and connected to machine learning block for modu-
lation format classification and OSNR estimation. The other
output of the coupler is connected to an optical spectrum an-
alyzer to obtain an OSNR reference value used for training
during the supervised learning. The OSNR reference values are
obtained for both NRZ and RC pulseshapes using rolloff factors
at 0.01, 0.1 and 0.2. Overall, we obtained 3 measurements at ev-
ery OSNR value for each of the 16 combinations of modulation
format and pulseshape. The OSNR values range from 4-30 dB
with steps of 0.5 dB.

The parameters of the neural network were found using the
matlab toolbox which optimizes the weights given in eq. (5).
The training data is provided to the toolbox and we only need to
select the optimization routine. The matlab toolbox then finds
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Fig. 5. Mean misclassification for 4-30 dB OSNR using a linear SVM
classifier with 8 features and RC 0.01 pulseshaping.

the NN parameters. The methods we selected for finding the
parameters is gradient descent based on error backpropagation
in combination with Bayesian regularization to reduce overfit-
ting. This was additionally cross-validated by the toolbox which
takes use of the entire available data set (K-fold) as to further
reduce the chance of overfitting. The number of hidden nodes
in the single hidden-layer NN construction has been determined
by model selection methods using the above explained opti-
mization process to find the appropriate model complexity. The
support vectors and the parameters required for the linear SVM
classifier were obtained by employing the similar approach. The
training data is provided to the toolbox and the model selection
of different kernels is performed using cross-validation to reduce
overfitting. The toolbox determines automatically the kernel pa-
rameters using the provided training data. The best performing
kernel is then selected.

IV. RESULTS

The modulation format classification is trained for differ-
ent OSNRs, thus it does not require knowledge of the OSNR.
For each considered pulseshape we trained one classifier with
four target classes: QPSK, 8 QAM, 16 QAM and 64 QAM.
Training is done using the matlab R2015b classification tool-
box. The training set consists of two feature measurements for
each OSNR value. The classification model is evaluated using a
third independent feature measurement. Fig. 5 displays the clas-
sification results of a trained linear SVM classifier using 8-D
input feature vector. An average classification accuracy of 94 is
obtained. Similar classification accuracy has been achieved for
less aggressive rolloff factors for RC pulseshaping as well as
NRZ. As seen in Fig. 5, no uncertainty is present when classify-
ing signals employing 8 QAM and almost no uncertainty when
classify-ing QPSK regardless of the present OSNR. However,
signals employing 16 QAM or 64 QAM involve a small risk
(approximately 8-13 on average) of misclassification towards
each other. Investigating this misclassification rate further, we
observed that the misclassification rate is reduced to less than

Fig. 6. Minimum variance measurements for QPSK, 8 QAM, 16 QAM and
64 QAM with RC 0.01 pulseshaping.

Fig. 7. OSNR estimation using minimum variance feature with trained NN
for DP-64 QAM and RC 0.01 pulseshaping.

3 when operating above 11 dB OSNR. However, below 11 dB
OSNR, it increases to around 35. Hence, the classification is
more challenging below 11 dB OSNR as features exhibit a high
degree of similarity.

The OSNR estimation requires knowledge of the pulseshape
and the modulation format, thus one neural network is trained
per combination of pulseshape/modulation format. Training is
done using matlab R2015b neural networks toolbox. The train-
ing set consists of two feature measurements for each OSNR
value. In Fig. 6, the feature measurements obtained from DD
eyediagrams are plotted as a function of the known OSNR. The
measurements are plotted for optical PDM signals employing
various modulation formats using 0.01 RC pulseshaping. The
feature and target value (OSNR) have a clear nonlinear relation-
ship and depict the mapping function, which the corresponding
neural network learns by adjusting its weights. This makes the
OSNR prediction possible1. Fig. 7 displays the OSNR estima-
tion as function of the OSNR reference values for PDM-64 QAM
signals using RC pulseshaping with rolloff 0.01.

Fig. 8 illustrates the corresponding squared training and test
(estimation) error as function of target OSNR to assess potential

1The fact that very simple neural network consisting of one hidden layer and
three hidden neuron, is employed demonstrates that the regression is relatively
simple. Indeed, also polynomial regression could also have been used.
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Fig. 8. Squared error of OSNR estimation for training and test data using
DP-64 QAM and RC 0.01 pulseshaping.

Fig. 9. OSNR estimation after 250 km of dispersion uncompensated
transmission.

model overfitting. As seen, estimation is most accurate from
4-17 dB OSNR with a mean estimation error of 0.2 dB and
worst-case error of 1.0 dB. When the signal quality exceeds
this interval, estimation is less accurate with a mean estimation
error of 1.2 dB and 3.5 dB worst-case error. As seen in Fig. 6,
the feature does not vary much from 17-30 dB, which increases
the uncertainty on the final OSNR estimation. A total mean
OSNR estimation error of 0.7 dB is achieved with a worst-
case estimation error of 3.5 dB. Results with similar estimation
accuracy have been obtained for less aggressive rolloffs for RC
pulseshaping as well as NRZ.

The presented results, so far, have only been verified for
the back-to-back case and thereby only in the presence of the
white Gaussian noise. For a real transmission scenario, linear
optical fibre impairments (chromatic dispersion, polarization
mode dispersion, PMD, and polarization dependent loss, PDL)
and nonlinear impairments (intra- and interchannel nonlinear
distortions) must also be considered.

To investigate the impact of the chromatic dispersion, we
have run a numerical simulation and tested the method for up
to 250 km of transmission through a dispersion uncompensated
link. The modulation format is still dual polarization 64 QAM
at 32 Gbd and the results are shown in Fig. 9. For the consid-
ered transmission distance, the method still works and is not
impacted by the chromatic dispersion. Going beyond 250 km
of uncompensated transmission distance is more challenging as

the extracted features from the eyediagram flatten out. There-
fore, to go beyond 250 km we will need to explore different
features than the ones we are using now. We have not tested
the method for dependence on the polarization dependent loss
and polarization mode dispersion. However, it can be said that
if the extracted features from the eyediagram are affected by
PMD and PDL then the method will suffer in accuracy. One
way around it is to find features that do vary with OSNR but
are independent to PMD and PDL or to design training stage
where the effects of PMD and PDL are taken into consideration.
The same argument can be used for the nonlinear optical fibre
impairments. In conclusion, more investigations are need to de-
termine the accuracy of the proposed method in the presence of
linear and nonlinear optical fibre impairments and these tasks
remain for the future work.

A. Feasibility for the Real-Time Implementation

Typically, optical performance monitoring unit does not nec-
essarily have to run in real-time. It can run in quasi real-time
similar to digital sampling oscilloscopes. When running in quasi
real-time the requirements on the latency are not as stringent as
in the case of the real-time operation. This of means that higher
degree of complexity and latency can be considered. We have
not done any evaluation on the feasibility of the method for the
real and -quasi-real time implementation. However, this impor-
tant topic will be considered for the next publication.

V. CONCLUSION

The presented results show that techniques from machine
learning such as neural networks based nonlinear regression
and support vector machine classifiers are beneficial for OSNR
estimation and modulation format classification. The method for
the OSNR estimation is independent of the modulation format,
however, the prerequisite is that the training stage is performed
using the modulation format that is going to be employed for
the transmission. It has been shown experimentally that esti-
mation of in-band OSNR and modulation format classification
is achievable from directly detected PDM signals employing
advanced modulation formats of up to 64 QAM with varying
pulseshapes.
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