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Abstract: Stokes space modulation format recognition (Stokes MFR) is a 

blind method enabling digital coherent receivers to infer modulation format 

information directly from a received polarization-division-multiplexed 

signal. A crucial part of the Stokes MFR is a clustering algorithm, which 

largely influences the performance of the detection process, particularly at 

low signal-to-noise ratios. This paper reports on an extensive study of six 

different clustering algorithms: k-means, expectation maximization, 

density-based DBSCAN and OPTICS, spectral clustering and maximum 

likelihood clustering, used for discriminating between dual polarization: 

BPSK, QPSK, 8-PSK, 8-QAM, and 16-QAM. We determine essential 

performance metrics for each clustering algorithm and modulation format 

under test: minimum required signal-to-noise ratio, detection accuracy and 

algorithm complexity. 

©2015 Optical Society of America 

OCIS codes: (060.1660) Coherent communications; (060.2330) Fiber optics communications. 
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1. Introduction 

Coherent detection in combination with digital signal processing (DSP) allows for 

implementation of advanced signal processing techniques, enabling increased spectral 

efficiency, digital impairment compensation, and in-service optical performance monitoring 

[1]. This detection scheme linearly maps amplitude and phase of an optical field into 

electrical, and subsequently, digital signal, which is then processed with DSP algorithms. In 

principle, a coherent receiver is a software-defined receiver, capable of acquiring and 

demodulating any modulation format for which appropriate algorithms are implemented. 

Simultaneously, optical networks are evolving towards dynamic lightpath switching driven by 

paradigms of self-managing and self-optimization [2]. For short-lived connections, lasting in 

the order of seconds, the delay incurred by the control plane may constitute a considerable 

overhead. Therefore, autonomous modulation format recognition (MFR) functionality, 

implemented as a subsystem in a multi-format coherent receiver, will lift the limitation 

imposed by a slow control plane, and allow for increasing the rate at which lightpaths can be 

switched. It will enable the receiver to demodulate and recover information from signals for 

which prior information on the modulation format is unavailable. Another potential 

application for MFR is in optical performance monitoring, where a dedicated device is used to 

acquire information about optical channels present in an optical link. 

Various approaches to optical MFR can be found in the literature, each of which has its 

limitations: (a) method based on k-means clustering of the received constellation diagram [3], 

which introduces a circular dependence between demodulation algorithms and the MFR 

subsystem; (b) direct-detection-based technique employing artificial neural networks trained 

with features extracted from optical eye histograms [4], which is not resistant to fiber 

impairments, such as chromatic dispersion (CD); (c) procedure based on the computation of 

signal cumulants [5], requiring prior polarization demultiplexing; (d) method based on the 

distribution of the amplitude histogram [6], which requires prior knowledge of optical signal-

to-noise ratio (OSNR); (e) classification using the received signal intensity histogram [7], not 

compatible with QAM modulation formats; (f) counting the number of clusters (groups of 

neighboring points) formed in Stokes space by using statistical signal processing methods [8], 

requiring high OSNR; and (g) a hybrid approach, combining (f) and (c) [9], which alleviates 

OSNR limitation. Out of these techniques, the Stokes-space-based MFR (Stokes MFR) 

subsystem is the most versatile, as it allows for modulation classification at an early stage in 

the DSP chain, before digital polarization demultiplexing [8], thus enabling subsequent DSP 

algorithms to be optimized for the detected modulation format. Moreover, due to properties of 

the Stokes parameters, the Stokes MFR subsystem is independent of polarization rotation and 

mixing, as well as frequency and phase offsets of the received signal, impairments which are 
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inherent to coherent optical systems. In our previous work in (f), we used Gaussian mixture 

model combined with variational Bayesian expectation maximization for clustering and 

cluster counting. However, the OSNR limitation of our previous method was caused by 

approximation of noise in Stokes space by a trivariate Gaussian distribution. In fact, Stokes 

space transformation considerably distorts the noise probability density function [10], 

effectively penalizing our previous approach at low OSNR. However, clustering and symbol 

counting can be accomplished by other algorithms, better suited to non-spherical or irregular 

noise distributions. 

In this paper we perform an extensive analysis of the following clustering algorithms 

applicable for Stokes MFR: k-means, expectation maximization (EM), density-based spatial 

clustering of applications with noise (DBSCAN), ordering points to identify the clustering 

structure (OPTICS) and spectral clustering. We use the following polarization division 

multiplexed (PDM) modulation formats: binary phase shift keying (BPSK), quaternary PSK 

(QPSK), 8-PSK, 8-ary quadrature amplitude modulation (8-QAM), and 16-QAM to test 

algorithms’ reliability in terms of optical signal-to-noise ratio (OSNR) needed. Furthermore, 

we propose a novel clustering algorithm for Stokes MFR, based on maximum likelihood 

between received data and stored features of the targeted formats. It is shown that the new 

method provides the best tradeoff among the performance metrics analyzed. 

2. Stokes space modulation format recognition 

The Stokes space representation of a signal is obtained, after CD compensation and timing 

recovery are performed, by computing the Stokes parameters of the linearly polarized 

received signals x and y, from samples at the ideal symbol instants, according to Eq. (1). 
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This results in total signal power (S0) and polarization of the received wave (S1, S2, S3). The 

vector (S1, S2, S3)
T
, after normalization by max(S0), allows for visualization of the transformed 

signal as a set of points in the Poincaré sphere, the Stokes space. As it can be seen in Eq. (1), 

Stokes-space-transformed signal becomes independent of polarization rotation and mixing, 

carrier frequency and phase offsets, since this transformation involves only relative phase 

differences between signal polarizations (x and y). Moreover, only symbol instants are used 

for this transformation, which requires 1 complex sample per symbol and does not depend on 

the received signal pulse shape. For each polarization-division-multiplexed (PDM) 

modulation format, a unique “fingerprint” – a distinct number of clusters, inscribed in a three-

dimensional lens-like object [11] will form in the Stokes space. Counting the number of 

clusters is sufficient to distinguish between many common modulation formats, which is the 

principle behind Stokes MFR. 

The top row of Fig. 1 shows constellation plots of five different modulation formats: 

BPSK, QPSK, 8-PSK, 8-QAM, 16-QAM. The bottom row depicts the respective Stokes space 

representation of the PDM versions of these signals, arbitrarily rotated, and possibly 

translated with respect to the origin of the Stokes space. 

Misalignment between the received polarization-multiplexed signals with respect to the 

axis of the receiver is translated into an arbitrary rotation of the clusters in the Poincaré sphere 

around the axis defining linear polarization (S1). In the simplified case with only one 

birefringent element, the clusters will rotate maintaining their relative positions. However, 

fiber impairments such as chromatic dispersion (CD), differential group delay (DGD), 

polarization mode dispersion (PMD), or polarization dependent loss (PDL) will introduce 

dispersion to the Stokes representation caused by non-constant fiber rotation matrix over the 
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signal bandwidth [11] and/or time span used for modulation analysis. Techniques for 

compensation of some of these effects in Stokes space have been investigated in the literature 

[12]. 

 

Fig. 1. Constellations of polarization-multiplexed modulation formats (top row) and their 
corresponding Stokes space representation in the Poincaré sphere (bottom row). 

3. Clustering algorithms 

Clustering algorithms, also known as unsupervised learning techniques, are machine learning 

methods which intend to classify raw data set into separate groups of points based on 

similarity measures between the different samples. 

We compare the performance of five different clustering algorithms applied to modulation 

format recognition in Stokes space: k-means, EM, DBSCAN, OPTICS and spectral clustering. 

We also introduce a new maximum likelihood method which measures similarity of an 

unknown signal to a template thus performing MFR. 

We use the following notation through this paper: the data set matrix is represented by X 

where xi represents i-th sample, the size of the database is denoted by N. Regarding clusters, 

K is the total number of clusters to be found, and k is an index representing k-th cluster. Ck is 

the set of points’ indices that are assigned to cluster k. 

3.1 K-means 

K-means [13] produces a partition of the data set into K different clusters, exclusively based 

on distance measures between the points. The objective of this method is to find the positions 

of the clusters’ centroids (µk) which minimize the cost function, defined as 
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K-means iteratively finds centroids of clusters in a data set. After randomly selecting an 

initial position for each centroid, the method iterates a two-steps algorithm until convergence 

is met. The first step assigns each sample to its closest centroid, while the second recomputes 

the location of clusters’ centroids according to new assignments. The procedure ends when 

convergence is reached, when there is no change of the cost function value between 

successive iterations. 

3.2 Expectation maximization 

EM [14] aims to extract the parameters of a Gaussian mixture model, i.e., a sum of weighted 

multivariate normal distributions, cf. Equation (3), by fitting the input data: means (µk), 

covariance matrices (Σk) and mixing coefficients (πk). Here we assume noise probability 

#234675 - $15.00 USD Received 13 Feb 2015; revised 9 Apr 2015; accepted 29 Apr 2015; published 4 Jun 2015 
(C) 2015 OSA 15 Jun 2015 | Vol. 23, No. 12 | DOI:10.1364/OE.23.015521 | OPTICS EXPRESS 15524 



density function can be approximated by Gaussian distribution. Unlike k-means, EM returns 

probabilities of each sample belonging to each cluster. 

    
1

| ,
K

k k k

k

p N


X X μ Σ  (3) 

EM usually uses k-means for initialization of parameters defining the model (µk, Σk, πk). 

Afterwards, expectation (E) and maximization (M) steps, similar to k-means, are iterated until 

convergence is reached. First, in the E step, probabilities for each sample belonging to each 

cluster, also called responsibilities, are computed. In the M step, the set of parameters 

defining the model is recomputed using the new responsibilities values. The iteration ends 

when the cost function does not change between successive iterations. 

3.3 DBSCAN 

DBSCAN [15] is a density-based method, which clusters the data set based on the 

neighborhood of samples. This aims to solve some recurrent problems associated with k-

means or EM: i) assumption of Gaussian shaped clusters; ii) the need to specify the number of 

clusters prior to clustering procedure. DBSCAN only requires two parameters: the minimum 

radius for the clusters (ε) and the minimum number of points required to form a cluster 

(MinPts). 

The algorithm checks if, for each sample in the data set, the needed conditions to start a 

new cluster or expand an existing one, defined by the algorithm, are met. These conditions are 

specified by the algorithm, as described in Eq. (4). In the case of fulfillment, the method looks 

for points in the neighbourhood accomplishing the same rule. The found samples also belong 

to the same cluster. 

  neighbourhood wherei iMinPts


 x x X  (4) 

3.4 OPTICS 

OPTICS [16] is a generalized version of DBSCAN, and therefore, it is also a density-based 

method. The main difference between them is the capability of dealing with different density 

clusters contrarily to DBSCAN, which is particularly useful when dealing with Stokes 

representation of signals, since clusters have different density depending on the distance from 

the center. The output of the algorithm is an ordering of the samples in the data set from 

which is possible to extract the corresponding clustering assignments. This ordering is made 

according to two new variables associated to each data point: the reachability distance and the 

core distance. These have been extensively explored in the literature. 

The procedure followed by OPTICS is very similar to that of DBSCAN, moreover 

including the computation of these two new variables for each visited point [16]. 

3.5 Spectral clustering 

Spectral clustering [17] has its bases on linear algebra and unlike other algorithms does not 

require the assumption of a certain density function. By performing a data transformation on 

the received signal, spectral clustering produces a more separated clustering structure from 

which it is easier to recognize the number of clusters. In the literature several approaches have 

been taken. In our comparison we follow the approach outlined in [17]. 

The transformation consists of computing the symmetric normalized Laplacian matrix of 

the data set, which takes into consideration similarity measurements between points, and, on 

this matrix calculate as many eigenvectors as clusters to be found. After this mapping, the 

eigenvectors are used as the new samples over which a simpler clustering algorithm like k-

means is used to obtain the final results. 
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3.6 Maximum-likelihood-based algorithm 

As mentioned in section 2, Stokes-space-transformed data may suffer rotation of the lens-like 

object inside of the Poincaré sphere. After compensating fiber impairments (CD, DGD, PMD, 

PDL), the arriving signal roughly maintains the relative position of the clusters. This allows to 

define a new method for identifying the modulation format by direct comparison of the 

transformed points in the Poincaré sphere rotated by an unknown angle with precomputed, 

ideal locations of clusters’ centroids. The comparison is performed by minimizing the 

Euclidean distance between the two sets of points. This procedure is different from the ones 

followed by clustering techniques, which rely on determining cluster count. 

The method consists of four steps, shown in Fig. 2, which should be performed for each 

tested modulation format. The first step aims to determine rotation of the clusters in the S1 

plane. We use precomputed QPSK Stokes centroids as a reference for this rotation search 

since these four centroids constitute a subset of all higher-order modulation formats under test 

(8-PSK, 8-QAM, 16-QAM), while BPSK is treated as a special case with a separate test for 

two centroids. We define the cost function in Eq. (5) as the Euclidean distance summation 

between each sample of the arriving signal xi and the closest point k from the set of 

precomputed QPSK centroids y rotated by angle θ, yk(θ). 
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i k
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The algorithm aims to select the angle α for which the cost function attains its minimum. By 

using these four centroids,, we can fairly accurately determine the rotation of the received 

signal around S1, given 90° rotational symmetry of the investigated constellations and their 

Stokes representations. Additionally, using y with only four centroids reduces computational 

complexity. Then, in step two, the precomputed centroids for all tested modulation format are 

rotated by angle α found in the previous step. This rotates their reference frame to the 

reference frame of the received signal. Subsequently, in step three, points of the received 

signal are assigned to the rotated centroids from step two based on the minimum Euclidean 

distance. After the assignments have been performed for all possible modulation formats 

under test, the best fitting is determined according to the silhouette coefficient (as explained in 

section 3.7) and hence the modulation format is detected. 

 

Fig. 2. Visual representation of the steps for the ML-based algorithm, applied to discriminate 

between BPSK, QPSK and 8PSK polarization multiplexed modulation formats. 
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The proposed algorithm offers the main advantage of not requiring any initial parameter 

contrary to most of the clustering algorithms, in which parameters’ selection may 

substantially influence the clustering process. However, the result can be degraded if the 

impairments compensation is imperfect and clusters’ relative position was not very well 

maintained. 

3.7 Number of clusters evaluation 

Some of the methods analyzed here (k-means, EM and spectral clustering) need to specify the 

number of clusters to be found in the data set in advance. Different methods exist to 

discriminate between clustering outputs and decide the best choice for the number of clusters 

in the literature. 

In this work, the Silhouette coefficient has been used. Silhouette compares the tightness of 

different clustering structures by analyzing the intercluster and the intracluster distances [18]. 

The more compact clusters are in the data set, the higher is the coefficient and the more likely 

it is the correct number of clusters. 

 

Fig. 3. Setup of the simulated optical communications system. Typical stages of DSP are 
shown with Stokes-based modulation format recognition step highlighted in green. 

4. Numerical simulation 

The system architecture used in our simulations is shown in Fig. 3. It consists of a transmitter 

able to generate five different PDM modulation formats (BPSK, QPSK, 8PSK, 8QAM and 

16QAM), an additive white Gaussian noise channel introducing variable noise power, and a 

universal Stokes-space-based receiver capable of receiving any of the modulation formats 

transmitted. 

The reliability of the clustering algorithms (k-means, EM, DBSCAN, OPTICS, spectral 

clustering, maximum likelihood) is analyzed using 500 realizations of 2000 samples each, for 

each modulation format considered. OSNR range spanning 5-30 dB (0-15 dB for BPSK) in 

steps of 0.1 dB has been examined in order to determine reliability of each clustering method 

as a function of OSNR. Specifically, the minimum OSNR required to correctly recognize the 

modulation format (i.e. correctly recognize modulation format in at least 95% of realizations) 

is a key parameter to assess performance of clustering algorithms and feasibility of MFR in 

general. 

In Table 1, the parameters specific to each clustering algorithm used in the comparison are 

summarized. They were adjusted empirically in order to maximize reliability of algorithms 

after several realizations. K-means and EM are randomly initialized, and spectral clustering is 

also initialized randomly after data transformation. The ML algorithm does not require any 

parameters to run. 
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Table 1. Algorithms’ parameters used for comparison 

Clustering Algorithm Parameters 

k-means Maximum iterations = 25 

Expectation maximization (EM) Maximum iterations = 25 

DBSCAN 

MinPts = 25 

ε = 0.09 

OPTICS 
MinPts = 25 
ε = 0.09; ε2 = 0.0085 

Spectral Clustering σ = 0.4 

Maximum Likelihood (ML) - 

5. Simulation results 

Reliability of clustering methods for each modulation format is measured as the percentage of 

correct classifications (cases in which the recognized modulation was in agreement with 

actual). Figure 4 shows the results of the reliability analysis for the considered OSNR range. 

Each cell in the plot shows the outcome for a different modulation format: (a) BPSK, (b) 

QPSK, (c) 8-PSK, (d) 8-QAM, and (e) 16-QAM. FEC limit, in terms of OSNR resulting in a 

bit error rate equal to 3.8 × 10
3

 at a symbol rate of 28 Gbaud, is shown with different 

background colors, with red corresponding OSNR below the FEC threshold, and green above. 

The general observation is that most clustering algorithms achieve correct classification at 

viable OSNR values. However, we notice performance differences in the lowest OSNR 

required by each method to give a significant percentage of detection. A surprising result for 

some algorithms is the deterioration of reliability as the OSNR increases. This is mainly due 

to high sensitivity to parameter values, which could not have been simultaneously optimized 

for all tested modulation formats and OSNR ranges, and were kept constant for all analyzed 

cases. Suboptimal initialization of clusters is also responsible for this behavior. Moreover, 

algorithms, in particular k-means and EM, which assume isotropic (spherical) distance or PDF 

functions, can be further improved for operation in the Stokes space [19]. Another interesting 

observation, is that for low OSNRs, algorithms, with exception of k-means, converge to the 

smallest possible number of clusters, i.e. 2 for BPSK, thereby selecting it by default. This 

explains the excellent reliability of these clustering algorithms for BPSK for OSNR values as 

low as 0 dB, significantly below the FEC threshold. On the other hand, k-means tends to 

cluster noisy signals into the largest possible number of clusters, i.e. 60 for 16-QAM, which is 

due to the fact that more clusters result in smaller error function values, and simultaneously, 

possibility of overfitting. 

K-means and OPTICS achieve better reliability for most of the modulation formats. 

However, in some cases like 16-QAM for OPTICS, reliability is poor for low OSNR. In this 

case, the combination of both methods: k-means for low and OPTICS for high OSNR, will 

result in high reliability for multiple modulation formats over whole OSNR range. 

On the other hand, the ML-based algorithm achieves considerably good results as 

compared with the FEC limit for all modulation formats. No parameters are necessary for this 

clustering method, resulting in a very good performance for all noise powers. 
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Fig. 4. Reliability results versus optical signal-to-noise ratio for the clustering algorithms. 

Average of 500 realizations. Green background represents the OSNR range higher than FEC 

limit for the corresponding modulation format at BER = 3.8 × 103 at 28 Gbaud. 
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Fig. 5. Minimum OSNR required for recognition of modulation formats for each clustering 

algorithm. 

In Fig. 5 the minimum OSNR needed for each algorithm is shown. This metric is 

measured as the lowest signal-to-noise ratio value required to achieve reliability higher than 

95%. Missing bars marked with * symbol, represent cases in which clustering did not achieve 

95% of correct classifications for any OSNR value under test (range under test is the same as 

in Fig. 4). Contrarily, no bars for BPSK symbolize that the modulation is already correctly 

recognized at 0 dB, due to preference of most algorithms towards low-count component 

clustering, as described earlier. 

 

Fig. 6. Relative complexity, evaluated in terms of algorithm runtime, for all clustering 

algorithms under test. 

Finally, the relative complexity of each of the implemented algorithms was estimated as 

being proportional to algorithm runtime. The results presented in Fig. 6, were obtained by 

calculating average runtime and normalizing with respect to the slowest time (spectral 

clustering with QPSK). Spectral clustering is globally the slowest method for all modulation 

formats studied, while density-based and ML based methods are the most rapid ones. It 

should be noted that MFR does not need to run continuously. A dedicated side-processor 
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could perform the MFR functionality on-demand or periodically. In order to perform MFR in 

an efficient manner, the modulation format recognition could be triggered only on network 

reconfiguration (fiber switching). This may be done by monitoring for short loss of signal 

events the receiver. 

6. Conclusions 

Modulation format recognition is a key functionality implemented in software-defined 

coherent receivers for future cognitive optical networks, in which delay introduced by the 

control plane has to be minimized. Among the different alternatives, Stokes MFR stands out 

by offering modulation recognition at an earlier stage in the DSP, thus enabling subsequent 

DSP algorithms optimization. 

We have compared the performance of MFR in the proposed architecture using six 

different clustering algorithms (k-means, EM, DBSCAN, OPTICS, spectral clustering and 

ML based) discriminating between five dual-polarized modulation formats (BPSK, QPSK, 

8PSK, 8QAM, 16QAM) in terms of OSNR performance, accuracy and complexity. 

Classification without a priori information is proved to be possible in all the OSNR range 

considered if a combination of methods is used. For example, k-means might be used at low 

OSNR and OPTICS at high OSNR, producing valuable results for all modulation formats 

except 8-PSK. They offer a very good balance between OSNR performance and complexity, 

but require little knowledge about approximate OSNR of the communication link. 

Finally, a new clustering method based on maximum likelihood has been proposed, that 

does not require knowledge of initial parameters. This proposed algorithm features a good 

trade-off between OSNR performance and complexity even when used alone. 
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