
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 6, AUGUST 2008 45

Loss Classification in Optical Burst Switching
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Abstract— Optical burst switching (OBS) is considered as a
contending technology for the core of the Internet in future.
However, due to lack of the buffers, losses occur due to contention
among simultaneously arriving bursts at the core nodes. Con-
tention losses do not necessarily indicate a situation of congestion
in the network. Thus differentiation (classification) of losses is
essential in many applications to avoid false identification of con-
gestion. In this paper, we propose a loss classification technique
for the OBS networks based on machine learning techniques.
We devise a new measure to differentiate between congestion
and contention losses, which is derived from the observed losses,
called the number of bursts between failures (NBBF). We observe
that the NBBF follows a Gaussian distribution with different
parameters for contention and congestion losses. This feature
is used in differentiation. We use both a supervised learning
technique (hidden Markov model (HMM)) and an unsupervised
learning technique (expectation maximization (EM) clustering)
on the observed losses and classify them into a set of states
(clusters) after which an algorithm differentiates between the
congestion and contention losses. We also demonstrate the use
of loss differentiation in improving the performance of Trans-
port Control Protocol (TCP) over OBS networks. We modify
congestion control mechanism of TCP suitably to arrive at two
variants of TCP, HMM-TCP and EM-TCP. Their performance is
compared with TCP NewReno, TCP SACK, and Burst TCP [1].
Simulation results demonstrate the effectiveness and accuracy of
the loss classification technique in different network scenarios.

Index Terms— Optical burst switching, machine learning, hid-
den Markov model, EM clustering, loss classification, TCP.

I. INTRODUCTION

OPTICAL burst switching (OBS) is a promising next-
generation optical switching paradigm in wavelength

division multiplexing (WDM) backbone networks [2]. It com-
bines the merits of both optical circuit switching and packet
switching because it avoids wastage of the resources due to
wavelength reservation even in absence of traffic and does
not require the use of optical processing logic or buffering.
Packets from the Internet routers are aggregated into data
bursts at an edge node, called ingress node, and transported
entirely in optical domain at the intermediate nodes, called
core nodes. It is generally assumed that core nodes do not
have the capability of buffering optical bursts. The optical
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data bursts are disassembled again into packets at the edge
nodes called egress nodes. Prior to sending a data burst, a
control packet (also known as burst header packet (BHP)) is
sent to reserve wavelength for the duration of the data burst.
This separation of the control and the data planes eliminates
the need for optical buffering and processing logic at the core
nodes. However, due to the lack of confirmation of resource
reservation, data bursts are dropped at the core nodes when
a wavelength is not available during any time of the burst
duration. Such a loss of bursts that occurs when the number
of bursts simultaneously arriving at a core node exceeds the
number of available wavelengths is called contention loss.
Since contention losses mainly occur due to the use of one-
way reservation mechanism and lack of optical buffers, they
do not usually indicate a situation of congestion. Research in
OBS mainly revolves around the different proposals to reduce
the burst loss probability (BLP) [3] due to contention. For
further details on the research issues in OBS the reader may
refer to [2].

Usually, in the context of OBS networks congestion has
been used to indicate prolonged contention losses [4]. Either
loss rate or the link load or both have been used to differentiate
between congestion and contention. The threshold values used
for load and loss rate in differentiation of the losses are chosen
qualitatively. In this paper, we use the definition for contention
and congestion based on the overlap degree given in [5]. Loss
of bursts when the number of bursts arriving simultaneously
at a core node exceeds the number of wavelengths for a short
duration is called contention loss. If bursts are lost persistently
due to the shortage of bandwidth it is called congestion.
Differentiation of these two types of losses is essential in many
applications. Most of the work similar to that in [6] and [7]
proposed routing protocols that consider the congestion on a
path to minimize the losses. The authors of [8] proposed a
feedback-based OBS network architecture wherein the nodes
along a path communicate the load to the ingress nodes.
This is used to reduce the rate of transmission of bursts and
avoid congestion. False identification of contention losses with
congestion leads to a TCP sender timing out (due to loss of
multiple packets in a burst). Work in [1] provided a method to
identify the false timeouts and proposed Burst TCP (BTCP), a
variant of TCP for OBS networks, to improve the throughput.
It was observed that identifying the type of loss (congestion
or contention) improves the throughput of TCP by avoiding
the reduction of congestion window size by half for each
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packet in a burst lost. However, such cross-layer techniques to
improve TCP performance use statistics collected at the OBS
core nodes by the TCP source. For a survey on the issues in
the study of TCP over OBS networks and different solutions
in the literature, the reader may refer to [9].

The problem of loss classification can be formalized with
Bayesian analysis. Let T = {C,W} be the possible type
of loss with C and W denoting congestion and contention,
respectively. Let L ∈ T be a random variable signifying the
type of loss and R be a random variable taking a value of
{0, 1} signifying the outcome of each burst transmitted with
0 indicating a successful transmission and 1 indicating a burst
loss. The quality of differentiation in a loss l possible with a
particular outcome r can be expressed as P [L = l|R = r].
From a Bayesian perspective,

P [L = l|R = r] =
P [L = l].P [R = r|L = l]

∑

l′∈T

P [R = r|L = l′].P [L = l′]

In the above equation, we see that reasonable estimates can
be made for the prior P [R = r|L = l] for every l.1 The
distribution in the denominator can be directly estimated from
the distribution of losses observed. That leaves only the priors
P [L = l] unknown. From this formulation we see that when
the distribution of P [R = r|L = l] is sufficiently distinct, we
get a good estimate of the loss pattern. In this work, we use
machine learning techniques to estimate the priors.

Machine learning techniques have been used earlier to
classify packets and flows in the Internet (for example, in [10],
[11]). Several methods have been proposed to differentiate
congestion and wireless losses which are used to improve
the throughput of TCP in wireless networks [12]. Generally,
the loss classification algorithms depend on the analysis of
statistical behavior of some observed values such as, packet
inter-arrival time and round trip time with user defined thresh-
old values. Since there are no queues at the intermediate
nodes in an OBS network, it is not possible to use parameters
like the variation in delay or the inter-arrival time to observe
the incipience of congestion. We classify the losses in OBS
networks based on a new metric, the number of bursts between
failures (NBBF) defined in this work. We justify the use of this
metric by showing that the NBBF in a set of observed losses
follows a normal distribution. In this paper, we use machine
learning techniques to classify the losses in OBS networks
into two categories viz, contention and congestion. Machine
learning techniques are popular for the classification of traffic
or losses because they are known to identify any observable
pattern in a desired metric even for dynamic traffic [11]. Su-
pervised machine learning techniques require the definition of
threshold values for classification which increases the chances
of misclassification of losses around the threshold values.
Therefore, we also use an unsupervised learning technique for
the loss classification. We train hidden Markov model (HMM)
(a supervised learning method) and expectation maximization
(EM) clustering (an unsupervised learning method) on the

1We obtain this from the distribution of NBBF, a metric defined in this
work.

pattern of NBBF and classify all the loss events into a certain
number of states or clusters. Then a state labeling algorithm is
proposed to classify the states (clusters) into congestion and
contention. Using the loss classifier developed, we modify
the congestion control mechanism of TCP to avoid sharp
reduction in congestion window for a burst loss and thus
improve the throughput. The end-to-end loss classification
method proposed in this work avoids any explicit notification
on the nature of loss from the core nodes or any measurement
of load and loss rate at each node (except in the training
phase of HMM-based technique). Instead of using the outcome
of each burst transmitted to know the level of congestion
on a path, we use the distribution of losses over a period
of time. Intuitively, congestion is associated with a higher
utilization of resources compared to contention so that we
observe larger number of simultaneous burst drops2. Further,
our classification approach has the advantage that it can be
tuned to favour the identification of one type of loss over the
other. For example, in this work since we use it to improve
TCP performance, accuracy of identification of the congestion
losses is favored. We observe from the simulation results
that the loss differentiation in OBS networks finds a major
application in improving the performance of TCP. Apart from
this, the end-to-end loss classification can be adapted for use in
routing, path and wavelength selection, and similar problems
to improve the performance of OBS networks. We believe
that the work reported in this paper is a first step towards
differentiating a situation of congestion from contention losses
in OBS networks.

The rest of this paper is organized as follows. We present a
basic introduction to the machine learning techniques, HMM
and EM clustering in Section II. Section III proposes the
framework used to observe losses and the loss classification
technique. We evaluate the performance of the classifiers as
well as the TCP sender that uses the loss classification in
Section IV and conclude the paper in Section V.

II. MACHINE LEARNING

In this section, we give a brief description of the supervised
and unsupervised machine learning techniques used in our
work. Using these techniques to classify the losses in OBS
networks forms a part of the next section. Machine learning
is programming systems to optimize a performance criterion
using example data or past experience [13]. We have a model
defined on some parameters and learning is optimization
of parameters of the model using the past experience. The
model developed may be predictive to make predictions in
the future, or descriptive to gain knowledge from data, or
both. Machine learning techniques have two phases; learning
(training) phase and classification phase. In the training phase,
the prior estimates are captured by building a model from the
training data. The model built using training data is input to a
classifier which then classifies the data set. Machine learning
techniques can be divided into two categories; unsupervised
and supervised. In unsupervised learning no labels are used
on the training data to be classified. On the other hand,

2We use 70% utilization of the bottleneck link to indicate high resource
utilization. The reason for this choice is explained later in Section III-C.1.
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supervised learning learns the classification using a set of
man-made examples. In this work, we use EM clustering
as a representative of unsupervised learning and HMM for
supervised learning. For more details on machine learning,
the reader may refer to [13].

A. Hidden Markov Models

HMM is a powerful modeling tool for two main reasons:
first, HMM is a statistical signal model which can provide
the basis for a theoretical description of any signal processing
system; second, it works very well when applied appropri-
ately [14]. A signal is normally expressed as a time series
visualized to come from a discrete time Markov chain. At
each state change, the chain generates an observation (signal)
based on a probability distribution associated with the current
state. In general, the observation can be either in discrete or
in continuous form. In this paper, we focus only on HMM
with discrete observations. Formally, an HMM is defined by
the following elements [14]:

• N , the number of states in the model. We denote the state
space as S1, S2, . . . , SN .

• M , the number of distinct observations. We denote the
observation space as v1, v2, . . . , vM .

• The state transition probability distribution A = aij

where aij = P [st+1 = Sj |st = Si], 1 ≤ i, j ≤ N .
• For each state Sj , the probability of observing an obser-

vation symbol o, is given by B = bj(o) where bj(o) =
P [ot = vm|st = Sj ].

• The initial state distribution π = [π1, π2, . . . , πN ] where
πi = P [s1 = Si], 1 ≤ i ≤ N .

Training the HMM requires finding appropriate values for
{aij}, {bj} and π. This inverse problem is usually attacked
using an iterative approach. The approach seeks to find the
parameters that make the set of observations most likely. With
increasing number of iterations, the current HMM becomes
more likely than the previous one to have generated the series
of observations. Good explanation on training an HMM is
given in [14], [15].

Once we have a trained model, we seek to find the state
sequence ŝ ={ŝ1, ŝ2, . . . , ŝT } that corresponds to a given
sequence of the observations ô ={ô1, ô2, . . . , ôT }. For this
we use the Viterbi algorithm [14], which uses dynamic pro-
gramming to perform an efficient inference of state sequence.
If λ̂ is the trained model (i.e., the model after multiple
iterations of the algorithm), the Viterbi algorithm produces
a state sequence ŝ such that the a posteriori log-likelihood
L(ŝ|ô; λ̂) is maximized, meaning that given the observation
sequence ô, ŝ is the most likely sequence of states followed
by the model λ̂.

B. EM Clustering

EM clustering is an unsupervised machine learning ap-
proach that uses the EM algorithm to classify un-labeled
training data into groups called “clusters” based on similarity.
The clustering phase is unsupervised because the algorithm
does not have a priori knowledge of the true class of the
object. For example, in our problem the algorithm does not

know if the loss is due to congestion or contention. A good
set of clusters should exhibit high intra-cluster similarity and
high inter-cluster dissimilarity [16]. The algorithm computes
some predefined set of parameters until a desired convergence
value is achieved. The EM algorithm estimates the statistical
parameters of a mixture of normal distributions. The finite
mixtures model assumes that all the attributes of the objects
to be clustered are independent random variables. A mixture
is a set of N probability distributions where each distribution
represents a cluster (N is the number of clusters). An indi-
vidual instance is assigned a probability that it would have
a certain set of values to the attributes given that it was the
member of a specific cluster. The probability distribution is
assumed to be normal and individual instances consist of a
single real-valued attribute (in this case, the NBBF). The job
of the algorithm is to determine the value of the mean, standard
deviation, and the sampling probability (fraction of instances
that an object belongs to that cluster) for each cluster. The
general procedure for EM clustering is as follows [17]:

1) Guess initial values for the parameters; mean, standard
deviation and sampling probability.

2) Use the probability density function (pdf) for a normal
distribution to compute the cluster probability for each
instance. In the case of a single independent variable
with mean µ and standard deviation σ, the pdf for

normal distribution is given by f(x) = 1
(
√

2πσ)
e

−(x−µ)2

2σ2 .
In case of two clusters, we have two pdfs each with a
different mean and a standard deviation.

3) Use the probability scores to re-estimate the parameters.
4) Terminate the algorithm if the parameters do not change

by more than a desired value.
5) Else, return to the computation of the pdf in Step 2.

The algorithm terminates when the measured cluster quality
no longer shows a significant improvement. To measure the
cluster quality, we use the likelihood that the desired data
is similar to that determined by clustering. This is done by
simple multiplication of the sum of probabilities for each
of the instances. Other measures for the termination of the
algorithm are fixing the number of iterations and the minimum
allowed standard deviation. Once an acceptable set of clusters
has been found using the above procedure, a classifier can
be built out of the same. For each object in the classification
phase, one of the clusters is identified as the most probable
cluster depending on the probability that it belongs to each
cluster. Ties among two or more clusters are broken randomly.

III. LOSS DIFFERENTIATION TECHNIQUE

The loss classification technique proposed in this work has
three phases. Using the ns− 2 simulator with necessary OBS
modules [18], we collect the data used for classification which
is a sequence of outcomes of bursts transmitted. Then we apply
HMM and EM clustering to classify the losses into congestion
and contention losses. In the next section, we use both these
classifiers to modify the congestion control mechanism of TCP
and show an improvement in the throughput.
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A. Framework for Collection of the Loss Statistics

We collected the loss statistics using the ns − 2 simulator
with OBS modules [18]. We used the NSFNET topology
in which 6 edge nodes were used as ingress-egress node
pairs. Traffic was generated with about 300 sources of which
90% were TCP and the rest were UDP. We placed sources
uniformly across all the ingress nodes. We chose the source-
destination pairs randomly and varied the load (by varying
the number of TCP sources and the rate of UDP sources) on
the path under consideration as well as the other correlated
paths. Such a variation in the number of sources (as well
as the source-destination pairs) and the rate of each source
creates congestion in the link (characterized by more than 70%
utilization of the link). In the topology used, we identified a
few bottleneck links that get congested when the load is varied
and ensure that measurement of losses is made along the paths
with these links3. We measured the load as a percentage of the
utilization of a link. When we refer to 70% load it indicates
that 70% of the link capacity is used by the traffic. Each link
had 64 wavelengths (of which 6 were used for control data)
with 1Gbps transmission rate per wavelength. The propagation
delay of the link was kept at 5ms. This simulation was run
for a fixed duration (about 2, 500 secs) at the end of which
we collected 25, 000 observations. An observation is basically
the result of a burst transmission on a path. The observations
were represented as a string of 0s and 1s with 1 representing
a burst loss. The following procedure was used to observe the
outcome of a burst sent on each path. Each burst sent between
a pair of nodes has a unique identifier. Whenever a burst is
successfully received at the egress node it is acknowledged
and the ingress node marks the outcome as 0. We assume no
out-of-order transmission so that a burst loss is detected at the
egress whenever a burst with larger identifier is received.

B. Metric to Classify Losses

To determine the state of a path, i.e., if it is congested or not,
we use the consecutive number of bursts successfully sent in
between two bursts lost. We define a parameter, the Number of
Bursts Between Failures (NBBF) which is the number of bursts
successfully received at an egress between any two bursts lost.
We use the NBBF as an attribute for training (clustering) in the
proposed classification techniques. The outcome of the bursts
sent between the same ingress-egress pair is represented as
a sequence of 0s and 1s. The sequence of observations (a
binary string) is converted into a sequence of the NBBF. For
example, if the sequence of outcomes is 10001000011001 then
it is represented by a sequence of the NBBF as (3, 4, 0, 2). In
case of the HMM-based classification, the reason for the loss
(characterized by the utilization of the link) is also recorded
whenever a loss is observed at the core node (this is done only
to measure the accuracy of classification).

We note that the utilization of a link is different in case
of contention and congestion losses. As mentioned earlier,
persistence of burst losses is taken as a situation of congestion.

3Since there is no literature on OBS networks that uses any testbed experi-
ments, we do not have more realistic ways of creating congestion scenarios. In
the future work, we would investigate alternate ways of generating congestion
losses.
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Fig. 1. Distribution of NBBF for losses by type (all, congestion and
contention).

So we use the NBBF as a metric to characterize the state
of a path. The distribution of NBBF obtained from the
25, 000 observations collected is shown in Fig. 1. The figure
shows the distribution of NBBF for both contention losses
and congestion losses. We show that the NBBF follows a
different distribution for both types of losses and it captures
the persistence of burst losses accurately. We observe that the
NBBF values for congestion losses are distributed around a
low mean with a small variance. This indicates that the path
is congested and hence most of the time only a few bursts are
sent successfully before a loss occurs. On the other hand, the
NBBF values for contention losses have a larger mean and
variance. We also observe that the NBBF follows a Gaussian
distribution and hence it can be used as a metric to differentiate
congestion from contention losses. In the supervised approach
of classification, along with the distribution of losses we also
use a threshold value for the utilization of link to label the state
of a path (as given in the next section). In the unsupervised
approach, we do not need to fix any such label and the loss
events are clustered by the EM algorithm iteratively.

C. Design of the Loss Classifier

In this section we use the NBBF distribution in the observed
losses and classify them into congestion or contention states.
This is done by using either one of the two techniques
independently to classify the observed set of losses into a
given number of states (clusters) and then using a state labeling
algorithm to identify the states of congestion and contention
among them.
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TABLE I

GAUSSIAN PARAMETERS FOR EACH STATE

State Mean (µ) Std. Dev. (σ) CV (σ/µ)

S1 3.03 0.48 0.16

S2 3.57 0.57 0.16

S3 4.17 1.21 0.29

S4 5.56 2.32 0.42

S5 8.34 2.31 0.28

S6 12.50 3.40 0.27

S7 25.00 5.87 0.24

S8 33.35 6.24 0.19

1) HMM-based Approach: We use an HMM with 8 states,
trained on 25, 000 observations4. For each loss at the core
node, we also record its type to allow validation of our
classifier. We use the link utilization to distinguish between
congestion and contention. As seen in Fig. 1, the NBBF
distribution is Gaussian. We show the mean, standard deviation
and coefficient of variation (CV) for each of the eight states
in Table I.

Note that the parameters of state 1 are similar to the NBBF
distribution for the congestion losses shown in Fig. 1. So state
1 resembles the state of congestion closer than any other state.
To verify this conjecture, we use the Viterbi algorithm [13]
to estimate the states and determine the most likely state for
each observation. Then, we use the information on utilization
of the path to compute the number of times a loss event
corresponds to each state which is plotted in Fig. 2. This plot
along with Table I confirms that state 1 is in fact the state
that corresponds to congestion closer than the other states.
As mentioned earlier, we use 70% utilization of the link to
indicate congestion. To arrive at this threshold, for different
values of link utilization above 50%, we classified the losses
into congestion and contention and then computed the error
in classification. We found that this threshold value gave the
lowest error in classification5.

We see that the distribution of NBBF for congestion losses
is quite different from that of contention losses. This difference
is clearly due to the way in which these losses occur. Any
state of the model, that corresponds to the congestion losses
should have a fairly compact distribution of NBBF, with a
low average value; i.e., its Gaussian distribution should show
a relatively smaller variance and mean. On the other hand, the
NBBF for contention losses may typically be larger than that
for congestion losses. These observations demonstrate that the
mean, standard deviation and CV of each state help to classify
the losses into congestion and contention. In Section IV-A,
we measure the accuracy of this classifier using a metric
misclassification probability.

2) EM Clustering-based Approach: We apply EM cluster-
ing on the losses observed with the number of clusters fixed to
8. In Section IV-A, we vary the number of clusters to observe

4It has been shown in [15] that in a number of settings, 4 states were
sufficient to characterize a network communication channel using observations
of loss events, and that 10, 000 observations were sufficient to train such a
model.

5The error in classification is represented by the misclassification proba-
bility defined in Section IV-A
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Fig. 2. Number of loss events corresponding to a state. For each state, the
shaded portion denotes the events in the presence of congestion.

TABLE II

GAUSSIAN PARAMETERS FOR EACH CLUSTER

Cluster Mean(µ) Std.Dev.(σ) CV(σ/µ) Samp. Prob.

C1 3.43 0.53 0.15 0.18

C2 3.76 0.59 0.15 0.14

C3 4.35 1.07 0.24 0.10

C4 5.88 1.59 0.27 0.08

C5 7.78 1.67 0.21 0.09

C6 11.89 3.34 0.28 0.11

C7 23.87 5.98 0.25 0.13

C8 30.86 6.83 0.22 0.17

its impact on the performance of the classifier. EM algorithm
is terminated when there is no significant change in the log-
likelihood value (10−4 here). After the termination, the mean,
standard deviation, CV and sampling probability obtained for
all the clusters are presented in Table II.

Similar to the HMM-based classification, we see that in
each cluster the NBBF follows a Gaussian distribution. Note
that the parameters corresponding to cluster C1 represent
congestion losses. From the parameters in the table, we see
that clusters closer to C1 can be labeled as those that cor-
respond to congestion. It is difficult to measure the accuracy
of unsupervised learning techniques because the data is not
labeled manually. One good metric used to measure the
quality of classification is the intra-cluster similarity, which
is represented by the average CV. Further discussion on the
accuracy of both the techniques is given in Section IV-A.

D. State Labeling Algorithm

Once we obtain the parameters for each state (cluster), we
use a state labeling algorithm to classify the states (clusters)
into two types; congestion or contention. The state labeling
algorithm uses the Gaussian parameters as an input and creates
two partitions based on the weights computed as given below.
The same algorithm is used to classify both the set of states or
clusters into two partitions to enable loss classification. In the
algorithm, we use the term state to denote both the states of
an HMM and the clusters in EM clustering technique. When
the clustering method is used, we replace the state transition
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TABLE III

WEIGHTS FOR THE 8 CLUSTERS COMPUTED BY THE STATE LABELING

ALGORITHM

State Mean(µ) Std.Dev.(σ) CV(σ/µ) Weight

C1 3.43 0.53 0.15 73

C2 3.76 0.59 0.15 145

C3 4.35 1.07 0.24 221

C4 5.88 1.59 0.27 295

C5 7.78 1.67 0.21 363

C6 11.89 3.34 0.28 440

C7 23.87 5.98 0.25 510

C8 30.86 6.83 0.22 580

probabilities with the probability of an object moving between
the clusters.

1) Partitioning the states into two groups:

• Given: The initial state distribution π, the state transition
matrix A = [aij], mean (µ), standard deviation (σ) and
CV (σ

µ ) for each state.
• Partition the states into two disjoint sets with the re-

striction that each set should contain at least one state.
There are 2N−1−1 such bipartite functions. Suppose that
{P1, P2} is one such partition and Si be a state, then we
define the flow between P1 and P2 as

f(P1, P2) =
∑

Si∈P1,Sj∈P2

(fij + fji)

where fij = πi.aij for 1 ≤ i, j ≤ N (product of a row
of A with corresponding π).

• Sort the resulting 2N−1 − 1 flows in order and select
the two partitions associated with the median of inter-
partition flow.

2) Label assignment to each partition:

• For 1 ≤ i ≤ N , sort [µi], [σi] and [σi/µi] in increasing
order and determine their ranks. Rank(µi) ≥ Rank(µj)
iff µi ≥ µj . The ranks are computed similarly for [σi]
and CV.

• Assign a weight to each state Si as follows:

w(Si) = α1Rank(µi) + α2Rank(σi) + Rank(σi/µi)

We use α1 = N2 and α2 = N after experimenting with
different values since they are found to yield good results.

• The states in the partition with the smallest weight are
termed as congestion states and the states in the other
partition are termed as contention states. The weight of
a partition is computed as the sum of the weights of all
states in the partition.

Note that this method is subject to refinement for different
scenarios. The weight assigned for each state is a function
of the parameters of the state. Using the rank instead of the
actual parameters improves the performance and adaptability
of the algorithm.

Table III presents the weights computed by the state labeling
algorithm for different clusters in the EM clustering method
along with the parameters given in Table II. We note that the
clusters C1 to C4 correspond to congestion states while the

others represent contention losses. Note that the state labeling
algorithm is same for both the learning techniques (HMM
and EM clustering). Average CV for the EM clustering is
0.22 while that for the HMM technique is 0.25. This means
that the EM clustering algorithm produces states with a higher
degree of similarity than the HMM technique.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the accuracy and performance
of the proposed loss classification techniques. We vary the
load in the network, the number of wavelengths and use
both dynamic and static traffic to evaluate the performance
of the classifiers. Further, we demonstrate the use of loss
classification to improve the performance of TCP over OBS
networks. All the simulations were run on the ns−2 simulator
with necessary OBS modules [18]. We used the same setting
used to collect loss observations mentioned in Section III-
A. We used the Latest Available Unused Channel with Void
Filling (LAUC-VF) scheduling algorithm, Just-Enough-Time
(JET) reservation protocol, and a mixed time-threshold assem-
bly algorithm [2]. We do not assume wavelength conversion
capability at the core nodes. The TCP traffic was generated
using FTP connections with average duration of 1, 500 secs6.
All the results were obtained with 95% confidence level and
the intervals are shown in the plots.

A. Performance of Classification Techniques

In a supervised learning technique, the data is labeled
manually i.e., we define states and classify losses into them.
Hence, the accuracy of the technique can be measured by
misclassification probability. Let P [t|t′] be the probability
of an observation being classified as belonging to the loss
type t given that it is in fact due to the loss type t′,
for t, t′ ∈ T , where T is the type of loss (contention or
congestion). Specifically, let the event “being classified as a
contention loss” be denoted as W and “being classified as a
congestion loss” be denoted C; and let the event “the loss
is actually due to congestion” be denoted C and “the loss
is actually due to contention” be denoted W . Among these
metrics, P [W |W] is appropriate for evaluating the accuracy
of classifying contention losses, and P [C|C] is appropriate for
the congestion losses. It is important to note that these metrics
can vary simultaneously. The misclassification probability, η
is defined as η = P [C|W] + P [W |C].

Different network parameters such as the load (measured as
a percentage of the capacity of the bottleneck link), the number
of wavelengths and the type of traffic (static or dynamic)
may affect the accuracy of loss classification by affecting
the distinctiveness of the distribution of NBBF around each
type of loss. The misclassification probability under varying
network load is presented in Fig. 3. It is observed that η is
highest in the case of moderate load, because the distribution
of NBBF contains a mixture of both congestion and contention
losses and hence an HMM cannot make a clear distinction
between them. Under low and high load HMM can easily
associate the NBBF distribution with a type of loss and thus
η is small.

6We considered only long-lived TCP flows in this work. Using loss
classification for short-lived flows needs to be addressed separately.
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Fig. 3. Variation of misclassification probability with network load. Confi-
dence intervals are also shown.

TABLE IV

ACCURACY OF CLASSIFICATION FOR DIFFERENT TYPES OF TRAFFIC

Type of traffic BLP P [C|C] P [W |W]

Static 0.17 1.00 0.90

Dynamic 0.19 1.00 0.84

Table IV shows the accuracy of the HMM-based classifica-
tion for static and dynamic traffic. In case of static traffic the
load (the number of TCP sources) on all the paths is fixed for
the duration of the simulation while it is varied continuously
for the dynamic case. We can see that the classification tech-
nique has better accuracy for the static traffic than the dynamic
case because, HMM has to react to the variation in the loss
pattern under dynamic traffic. Since we favoured accurate
identification of the congestion losses, P [C|C] is unity. We
also study the effect of the number of wavelengths on a link
on the classification accuracy. From Table V, we note that
as the number of wavelengths increases, the misclassification
probability decreases. This is because when there are more
wavelengths, HMM can easily differentiate between the case
of continuous lack of resources from the case of unavailability
for a short duration. In the results shown in both Table IV and
Table V we varied the load from 20% to 80% and computed
the average values of burst loss probability (BLP) and the
accuracy (error) in classification.

Unlike HMM-based classification, EM clustering works on
un-labeled data so that its accuracy cannot be measured with a
parameter like the misclassification probability. An important
parameter that affects the performance of this technique is the
number of clusters. If the number of clusters specified is large,
then the clusters have higher intra-cluster similarity which is
reflected in a low CV. We vary the number of clusters in
the EM clustering and evaluate the Gaussian parameters for
each cluster. The average CV for a given number of clusters
is plotted in Fig. 4. As the number of clusters increases,
the clusters have a higher degree of intra-cluster similarity
and hence lower average CV. In our work, we observed that
increasing the number of clusters beyond eight did not improve

TABLE V

ACCURACY OF CLASSIFICATION FOR DIFFERENT NUMBER OF

WAVELENGTHS ON A LINK

No. of Wavelengths BLP Misclassification Probability

8 0.15 0.14

16 0.15 0.10

24 0.17 0.10

32 0.14 0.08

64 0.18 0.04
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Fig. 4. Variation in the average CV with number of clusters.

the performance of the classifier because we ultimately map
all the clusters to two sets.

In conclusion we discuss the pros and cons of both these
techniques for loss classification before we apply them to im-
prove the performance of TCP. One of the main disadvantages
of the HMM-based loss classification in OBS networks is
that it required the definition of a threshold value for link
utilization to label the congestion states. As mentioned in
Section III-C.1 we found that identifying congestion with
losses associated with link utilization of 70% minimized the
error in classification. The choice of the threshold value can
vary in other scenarios. It is also difficult to maintain the
utilization of all the links at the edge nodes. Finally, special
care has to be taken while obtaining the training data (NBBF
distribution) from the simulator (or from a real network) so
that different scenarios of the network are considered. EM
clustering (an unsupervised technique in general) overcomes
most of these limitations. It works on the training data
iteratively and classifies the loss events into clusters. Without
any label given to the clusters, one can still make reasonable
use of the pattern in losses to identify the state of a path.
In the next section, when we use both the classification
techniques to improve the performance of TCP, we see that
the EM clustering performs slightly better than the HMM
classification. It must be noted that the state labeling algorithm
in Section III-D also affects the accuracy of classification.

Note that the machine learning techniques require a training
phase to initially classify the losses. This is done offline using
the observations collected from the simulator. On a Pentium
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4 computer with a 3.0 GHz processor, and 512MB RAM it
took about 18 secs with 26 iterations for an 8-state HMM to
classify the 25, 000 observations. Similarly, it took about 17
secs with 24 iterations for the EM clustering. However, we
found that it takes much lesser time to classify losses online
with a trained classifier (i.e., time taken by the TCP sender to
associate losses with different states).

B. Application of Loss Classification to Improve TCP Perfor-
mance

We demonstrate the use of machine learning-based loss
classification to improve the performance of TCP over OBS
networks. We modify the congestion control mechanism of
TCP such that it halves the congestion window for a burst
loss only if the path is observed to be congested at that time.
To know if the path is congested or not, we use the classifiers
developed in the previous section. We found that after training
the classifiers, to identify the state of a path, it took only
about 1.5 times the round trip time of a TCP connection
(in the order of a few ms). As mentioned in [1], whenever
a burst is lost in OBS network, the TCP sender perceives
it as a simultaneous loss of all the packets in the burst.
In the congestion avoidance phase, TCP halves the current
congestion window for each packet lost. Depending on the
number of packets in a burst lost, the TCP sender might set a
low value of congestion window or go to a timeout state. This
leads to a low throughput most of the time. The over-cautious
approach of TCP is not desired in OBS networks because
burst losses do not necessarily indicate congestion. To improve
the throughput, several variants have been proposed in the
literature [9]. Most of the work uses a method of notifying the
TCP sender that a burst loss is not associated with congestion
on the path and thus avoids drastic reduction of the window.
Some of them use explicit feedback from the core nodes while
the others use end-to-end methods to identify false congestion
(contention losses).

The loss classification techniques are mainly used to know
if the path is congested or not and we can avoid halv-
ing the congestion window unnecessarily (for the temporary
contention losses). We use both HMM and EM clustering
methods to identify congestion and detect false timeouts. This
improves the throughput by reducing number of times the
congestion window is halved. Whenever a burst loss occurs
in the core network, the TCP window size is reduced only
if the classifier identifies that the path is in a congested state.
Since TCP sender automatically identifies a loss with duplicate
acknowledgments, we do not need an explicit feedback to
detect a burst loss. To know if the path is congested, we use
the techniques proposed for loss differentiation. We call the
two variants of TCP, that use loss classification at the ingress
node to identify congestion as, HMM-TCP (TCP using HMM-
based loss classification) and EM-TCP (TCP using the EM-
clustering based loss classification). The congestion window
is reduced only once irrespective of the number of packets
lost due to a burst loss.

We compare the performance of these variants with BTCP
proposed in [1], TCP NewReno, and TCP Selective Acknowl-
edgment (SACK). BTCP is also capable of handling multiple
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Fig. 5. Variation in average TCP throughput with load.
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Fig. 6. Variation in average TCP goodput with load.

losses in a single burst. It reduces the window size only
once for many packets lost in a single burst and so performs
better than TCP NewReno. TCP SACK uses the selective
acknowledgments option in the acknowledgment packet to
indicate all the packets lost which are retransmitted at once.
It was found by the authors of [1] that TCP SACK has
the best performance among the three variants of TCP (viz.,
Reno, NewReno and SACK) in OBS networks [1]. BTCP uses
explicit feedback and does not actually differentiate between
a contention loss and congestion. It must be noted that since
we intend to show improvement in TCP performance only
as an application of the loss differentiation technique, we do
not concentrate on tuning the loss classifiers to improve TCP
throughput.

We evaluate HMM-TCP, EM-TCP, BTCP, TCP NewReno,
and TCP SACK by comparing the average throughput, good-
put and number of timeouts for a single flow. We vary the load
on the path, measured as a percentage of the maximum link
capacity (64Gbps in all results), and plot these metrics. As can
be seen from Fig. 5 and Fig. 6, both TCP variants that use the
machine learning-based classification have a higher throughput
and goodput than the other variants. The improvement is
higher for low and medium load because the machine learning
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Fig. 7. Normalized number of TCP timeouts with varying load.
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Fig. 8. Variation in the normalized number of control messages with load.

techniques have better accuracy of classification.
We can also see from Fig. 7 that the number of times

a TCP sender goes to timeout state is also smaller for our
variants than that for the others. We normalized the number
of timeouts with that obtained at 80% load to show the relative
performance. It can be seen that EM-TCP performs slightly
better than HMM-TCP with respect to all the metrics as the
clusters formed by the EM algorithm have a higher degree of
“intra-cluster similarity”(i.e., lower average CV).

We also study the control overhead incurred due to the
messages used to know the state of a path (including the TCP
acknowledgments) in the machine learning-based variants of
TCP. Fig. 8 shows the variation in the number of control
messages (normalized with that at 80%) for all the TCP
variants as the load increases. The control overhead of our
variants is lower than that for BTCP but higher than that for
TCP NewReno and SACK (which do not use any additional
messages apart from the regular acknowledgments).

V. CONCLUSION

In this paper, we addressed the problem of differentiating
contention losses from a situation of congestion in OBS
networks. We proposed a new measure called the NBBF which

was found to follow a Gaussian distribution with different
parameters for contention and congestion losses. We used
a supervised machine learning technique viz, HMM and an
unsupervised learning technique viz, EM clustering to train
on the NBBF observed and classify the set of losses into
states (clusters). The set of losses were classified into two
types, congestion and contention using a heuristic technique.
We evaluated the accuracy of the classifiers under different
network conditions. We compared our TCP variants (which
use loss differentiation at the source) with TCP NewReno,
TCP SACK, and BTCP to demonstrate the use of end-to-end
loss differentiation mechanisms in improving the performance
of TCP. Apart from this application, loss classification can also
be used in routing, path and wavelength selection, and similar
problems to improve the performance of OBS networks. We
believe that the work done in this paper is a first step taken
to differentiate contention losses from congestion losses in
a better fashion. We also believe that this work opens new
directions in the problem of loss differentiation (classification)
in OBS networks. Using machine learning techniques for loss
classification has an advantage that they can be tuned for use
in different applications even in dynamic network scenarios.
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