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Abstract A machine learning-based classifier, namely SVM, is introduced to create the nonlinear 

decision boundary in M-ary PSK-based coherent optical system to mitigate NLPN. The maximum 

transmission distance and LPRD tolerance are improved by 480 km and 3.3 dBm for 8PSK. 

Introduction 

Machine learning as a powerful interdisciplinary 

tool has been widely applied to solve various 

problems in different areas, such as data mining, 

pattern recognition, medical imaging, and 

artificial intelligence, etc1. Recently, techniques 

from machine learning have been equally well 

applied to nonlinear optical fiber communication 

channel2. Among various algorithms, we find 

that support vector machine (SVM)3 as one of 

the most popular machine learning algorithms 

has the potential to be applied to digital signal 

processing (DSP) for the nonliearity mitigation. 

The fiber nonlinearities have been identified 

as the limiting factors for enhancing the capacity 

and transmission length of coherent optical 

system. Nonlinear phase noise (NLPN) is one of 

the dominating factors, especially for the M-ary 

phase-shit keying (M-PSK) modulation formats, 

such as BPSK, QPSK, and 8PSK. The NLPN is 

induced by the interaction of the amplified 

spontaneous emission (ASE) noise from the 

inline optical amplifier and fiber Kerr effect, 

known as self-phase modulation (SPM)4. 

In order to mitigate NLPN, various schemes 

have been proposed. Based on DSP technique, 

the NLPN could be supressed by the maximum 

likehood estimation (MLE)5 and digital back-

propagation (DBP) algorithms6. However, all 

these electronic methods rely on the 

deterministic information of the fixed fiber link, 

implying that they are not suitable for dynamic 

and  reconfigurable optical network link.  

In this paper, we introduce SVM algorithm into 

the M-PSK based coherent optical transmission 

system to mitigate the NPLN. Without any prior 

information, SVM can learn and capture the link 

properties from the training data. As a nonlinear 

classifier, SVM creats the decision boundary to 

classify the different constellations from each 

other to avoid the crosstalk and mistake caused 

by NPLN. The numerical results show that SVM 

outperforms MEL algorithm5, especially for the 

high order formats. The launch power dynamic 

range (LPDR) is increased by 3.3 dBm for 8PSK, 

1.2 dBm for QPSK, but not significant for BPSK. 

The maximum transmission distance for 8PSK is 

improved by 480 km and the reason is also 

analyzed. As a result, NPLN is effectively 

mitigated by SVM, so that the longer distance 

and larger launch power range are achieved. 

Operation principle of SVM for M-ary PSK 

The SVM as a binary classifier could generate 

one separating boundary to classify two groups 

of data (represented by red triangles and blue 

circles), as shown in Fig. 1(a). Based on the 

statistical learning theory, SVM aims at finding 

the point closest to the separating hyperplane 

and making sure it is as far away from the 

separating line as possible, namely maximizing 

the margin1. The points closest to the separating 

hyperplane are known as support vectors. 

However, the above situation is under one 

assumption: the data is linearly separable. But it 

is clear that the data cannot always be 

separated linearly, as shown in Fig. 1(b). Hence 

the kernel function, such as Gaussian radial bias 

function, is adopted to map linearly inseparable 

data from one lower-dimensional feature space 

to another higher-dimensional feature space1. 

After making the substitution, we can solve this 

linear problem in higher-dimensional space, 

which is equivalent to solving a nonlinear 

problem in lower-dimensional space in Fig .1(c).  

If we regard the different constellations of M-

PSK signals as different classes of data, SVM 

may be applied to creat the decision boundary 

to avoid the errors induced by nonlinear 

impairment. We design three classification 

strategies for three corrsponding PSK signals. 

For example in Fig. 2(a), BPSK with two 
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Fig. 1: SVM schematic diagram 
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constellations (standing for 0 and 1) could be 

classified by one hyperplane to identify the 

different data. For QPSK and 8PSK, inspired by 

the idea of multicalss classifier3, only log2(M) 

SVMs are needed for M-classes problem. In this 

method, each signal’s category is labeled in 

binary format with each bit modeled by a two-

class SVM, namely bit “1” labeled as “+1” and “0” 

labeled as “-1”. The constellations using the 

Gray code are shown in Fig. 2. Here we take 

one constellation (011) of 8PSK as example. If 

the test data (011) is detected by SVM1, the first 

bit “0” is classified with the label “-1”, then 

detected by SVM2, the second bit “1” labeled as 

“+1”, finally detected by SVM3, the third bit “1” 

labeled as “+1”. As a result, all the constellations 

of 8PSK can be decisided correctly. 

Numerical model and results 

The numerical model based on coherent optical 

transmission system is set up, as shown in Fig. 

3. Three kinds of Gray coded M-PSK signals 

operating at 40 Gbaud (i.e. BPSK at 40 Gbps, 

QPSK at 80 Gbps, and 8PSK at 120 Gbps) are 

generated by the IQ modulator, which is driven 

by the NRZ pulse shaping filter to transmit the 

PRBS with the length of 215-1. The transmission 

link consists of N×80 km dispersion-shifted fiber 

(DSF) spans. The fiber nonlinear coefficient is 
1 1

1.3= W km and the loss efficient is 0.2

dB/km. Following the referenced model5, in this 

paper, we mainly focus on NLPN dominant 

single-channel system neglecting chromatic 

dispersion and multichannel effects. The EDFA 

with the noise figure of 6 dB is placed at the end 

of each span to compensate the fiber’s loss. 

Next, the received signal is detected by a 

coherent receiver and the sampled signal is 

detected by the SVM-based digital detector. 

Different modulation formats need different 

amounts of SVM: one required by BPSK, two by 

QPSK, and three by 8PSK. The number of 

training symbol is 1000. If the training course is 

finished, then the test data could be labeled as 

“+1” or “-1” by the trained SVMs. According to 

the output labels, the data will be mapped to the 

corresponding symbol, as dsigned in Fig. 2. 

The detection examples of SVM-based 

decision boundaries for BPSK, QPSK, 8PSK 

systems over 1600 km with the launch power of 

0 dBm are presented in Fig. 4. Suffering from 

the ASE noise and NLPN, the constellations of 

M-PSK have rotated large angles and deflected 

significantly which may result in the crosstalk, 

decision errors, as well as high bit-error rate 

(BER). If without the effective decision boundary, 

we can hardly identify the original signals 

properly. With the help of SVM, the nonlinear 

decision boundary is successfully created, as 

shown in Fig. 4. 
In order to demonstrate the feasibility of SVM, 

the widely-used MLE algorithm5 is selected as a 
comparison. The BER performances of the received 
signals as a function of launch power are separately 
measured for BPSK, QPSK, and 8PSK, and as a 
reference, the direct decision without any mitigation is 
also tested, as shown in Fig. 5(a)-(c). The launch 
powers for the all three formats range from -15 dBm 
to 15 dBm. However, different PSK formats have 
different resistances to nonlinear impairment. In order 
to obtain the appropriate BER values, we set different 
formats to transmit through different fiber lengths: 50 
spans (4000 km) for BPSK, 35 spans (2800 km) for 
QPSK, and 20 spans (1600 km) for 8PSK.  

From Fig. 5, it is seen that the BER 
performances of three formats are very poor when 
without NLPN mitigation (in green line). For the other 
two mitigation methods (MLE in red line and SVM in 
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Fig. 3: Numerical model: CW: continuous wave; EDAF: 

erbium-doped fiber amplifier; LO: local oscillator; OBPF: 

optical band-pass filter; BPD: balanced photodiode. 
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Fig. 4: The nonlinear decision boundaries created by 
SVM-based classifiers: (a) BPSK by one SVM; (b) QPSK 

by two SVMs; (c) 8PSK by three SVMs. 
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blue line), with the increase of the launch power, the 
OSNR of the received signal grows higher, 
contributing to the better BER performance. When 
the launch power exceeds the optimal values, the 
received signal suffers from the remarkable nonlinear 
effect, which deteriorates the BER performance 
again. Here, the LPDR, which denotes the difference 
between the two power values corresponding to the 
points at BER of 1×10-3, is employed to evaluate the 
effect of SVM and MLE. However, compared with 
MLE method, it can also be observed that SVM 
scheme displays different superior performances for 
different formats. For BPSK, the BER curves of SVM 
and MLE almost overlap, and the LDPRs of them are 
similar. For QPSK, the LDPR of SVM has 1.2 dBm 
larger than that of MLE, while for 8PSK, the 
improvement expands to 3.3 dBm. Moreover, the 
maximum transmission distance corresponding to 
BER of 1×10-3 at a given launch power of 2 dBm is 
also investigated for 8PSK. From Fig. 5(d), it is seen 
that the maximum distance is improved by SVM to 
480 km longer than MLE. As a result, SVM achieves 
longer distance and larger launch power range, 
especially for high order formats. 

This is mainly because that high order 
formats are more sensitive to NLPN due to the 
closer Euclidean distance and more number of 
constellations. Therefore, the decision boundary 
for high order format needs to be precisely 
designed according to the shape of adjacent 
constellations to reduce the error probability. 
While the decision boundary of MLE based on 
Rice distribution and relying on the transmission 
link is more fixed and difficult to be adjusted 
flexibly. On the other hand, for SVM, by 
modifying the hyperplane parameters and 
selecting the appropriate kernel function, the 
shape of nonlinear decision boundary can be 

flexibly adjusted to create any irregular nonlinear 
shape and satisfy the more precise classification. 
Therefore, the SVM performs a relatively larger 
improvement in nonlinear system tolerance. 

Conclusions 

We have shown that SVM is a powerful tool to 

mitigate the nonlinear phase noise. For M-PSK-

based coherent optical transmission systems, 

SVM achieves longer distance transmission and 

larger LPRD tolerance, more significant for high 

order formats: 480 km and 3.3 dBm 

improvement for 8PSK. In addition, we believe 

that SVM can also be applied in other formats, 

and may better exert its advantages in the 

higher order and more complex formats, such as 

16QAM or 64QAM. We design the classification 

strategies for 16QAM with four SVMs and 

64QAM with six SVMs, respectively. Therefore, 

SVM may have the great potential to combat 

other nonlieanr problems for other complex 

formats. Meanwhile, inspired by SVM method, 

other machine learning algorithms are also 

valuable to be investigated for the coherent 

optical transmission system in the future. 
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