
TSDN-Enabled Network Assurance:
A Cognitive Fault Detection Architecture

Danish Rafique, Thomas Szyrkowiec, Helmut Griesser, Achim Autenrieth, and Joerg-Peter Elbers

ADVA Optical Networking SE, Munich, Germany, drafique@advaoptical.com

Abstract We propose and demonstrate a cognitive fault detection architecture for intelligent network

assurance. Our framework both detects and identifies significant faults, and outperforms conventional

fixed threshold-triggered operations, both in terms of detection accuracy and proactive reaction time.

Introduction

Network assurance is a key operational

requirement of modern optical communication

systems. Traditionally, this has been achieved by

introducing redundancy in network architectures,

service level agreements (SLAs) based on

conservative designs, etc. resulting in high capital

expenditure. On the other hand, with the

inception of 5G technologies – and subsequent

front-haul and back-haul dynamic connectivity

requirements, the task of network assurance is

becoming increasingly complex, and

necessitates novel architectures incorporating

automated, flexible and reliable – potentially

open – network management solutions. In this

context, software-defined networking (SDN)

proposes centralized network controllers to

enhance network programmability by separation

of data and control plane. Likewise, network

monitoring approaches have been reported using

distributed and centralized frameworks1.

However, typical network management functions

make use of pre-determined threshold-based

triggers for configuration, restoration, planning,

etc. This often leads to underutilization of network

resources due to pessimistic design conditions.

Furthermore, service and network behaviour can

evolve in an unpredictable manner, and catering

such faults using fixed thresholds not only

exposes the network to unacceptable SLA

breaches, but is also a non-scalable approach –

with increasing network complexity. While

anomaly-based virtual service and capacity

planning has been proposed in literature2,3,

network assurance involving automated fault

detection remains largely unexplored.

In this paper we propose a transport SDN

(TSDN)-integrated cognitive fault detection

architecture, incorporating data analytics based

on advanced machine learning methods. In

particular, we disclose various types of real-life

network fault use cases, extracted from our

sample customer network, identify them using the

proactive fault detection (PFD) framework, and

compare its efficiency with traditional condition-

based set point detection.

Overall Architecture

Our proposed architecture aims to proactively

detect potential failures in real-time, replacing the

static pre-defined fault thresholds. Fig. 1 depicts

the software architecture for our approach, where

the PFD framework is located within the TSDN

controller. The monitoring data is collected every

15minutes through the southbound interface

(SBI) – NETCONF, which is abstracted and

stored in a database. The engine performs fault

detection and classification, generates fault layer

information (by mapping the metadata), fault

locations, and maps the machine learning

outcome to an internal decision engine followed

by respective application (not specified here),

exposed via RESTCONF to the northbound

interface (NBI). The optical controller is an ADVA

controller, whereas hardware components – in

the given example –, comprise of ADVA

FSP3000 network elements. Note that we

consider a TSDN-integrated approach for our

framework, however, the proposed architecture

may be disintegrated, decentralized or used as

part of an orchestrator as well. Furthermore,

Fig. 1: TSDN controller with PFD architecture. Underlying
network/service (arrow) is exemplary, and representative
of sample network. PFD: Proactive fault detection

Applications

d

N
e
tM

a
p
p
e
r

Monitoring
database

Southbound Interface

Deviation Model

Northbound Interface

Decision Engine

Event Classifier

T
S

D
N

 C
o
n

tr
o

ll
e
r

ADVA Optical Controller

Data Abstraction

Proactive Fault
Detection Module

mailto:drafique@advaoptical.com

while we test the proposed approach on features

monitored at layer 0, the proposed cognitive

architecture is scalable, and may be reused with,

for example, packet flows (using OpenFlow, etc.).

Algorithm and Fault Types

Tab. 1 details the cognitive fault detection and

classification approach. The goal of this

procedure is to retrieve and process data blocks

(partitioned data), make abnormality decision,

prune the points which are insignificant, send the

results to the next cycle, and eventually decide

on true positives. The algorithm takes as input the

monitoring data, and outputs labels for normal

and abnormal operation. The details of the steps

are as follows: The core of PFD framework

traverses through the monitored data, and

applies block based deviation and classification

tests for a given set. The decision engine predicts

true abnormal behaviour using neural networks

based classifier, trained using historical fault

patterns. Fig. 2 shows the implemented workflow.

The fault types typically observed in commercial

networks are classified in Tab. 2. The reported

fault categories are feature agnostic, and

applicable to multiple layers in communication

stack. Network faults can take many forms

including a spike due to a short-lived event, a

gradual change in behaviour, a state change due

to certain configuration changes, and finally

localized abnormalities indicating potential faults.

Proof-of-Concept and Discussions

The experiment was carried out using diverse

configurations extracted from ADVA’s sample

customer network, where various patterns were

simulated, as discussed in Tab. 2. The labels

represent abnormal behaviour which may or may

not lead to potential failures. The physical layer

received optical power levels were pulled in real-

time via the optical controller, and the proposed

architecture was executed on a host server. The

monitored data was normalized to same scale

(-1dBm) for better visualization, and this action

did not have any impact on the performance. We

evaluated two scenarios: one employing the PFD

engine, where the true potential failure scenarios

were cognitively predicted, and other where PFD

was replaced by a fixed pre-determined fault

determination threshold. Note that since we

normalized our data, a single threshold was used

for comparison, wherease in practice several

threshold are required to be defined and

maintained for various network configurations.

Fig. 3 shows various fault patterns, as described

in Tab. 2, for different time traces. Fig. 3a depicts

the performance of threshold-triggered fault

detection, where label I is fully detected, labels’

III and IV are only partially detected, whereas

label II remains undetected. In comparison, Fig.

3b illustrates results from the proposed cognitive

architecture, where all labels are largely

detected, except for three (one) potential faults in

label II (IV). It is worth mentioning that while the

detection rate of faults is an important metric, the

fundamental operational requirement is the ability

to react to such potential failures in time.

From Tab. 3 it can be observed that our proposed

architecture outperforms conventional set-point

based detection, both in terms of detection rate

and associated response time (defined as time

from detection to typical alarm level) – for any

given fault label. Specifically, label IV may be

adequately addressed before actual failure, with

a response time of 96hrs, as opposed to no

Tab. 1: Algorithm for cognitive fault detection framework,
processing monitored data as an input and generating
proactive fault information as output

INPUT:

OUTPUT:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

for all blocks in
 do

K getBlock

for all point k

 DeviationCalc()
 ClassificationTest()

R getDecision(, C)
f :
defined as NetMapper(

Tab. 2: Definitions for typical network fault patterns

Fault Label Description

I
Point abnormalities due to random
flash events and may lead to abrupt
device damage

II
Local abnormalities indicating
potential flaws with potential long-
term impact on service performance

III

Steady abnormalities due to
preceding system configuration
changes, and may lead to damage
and/or consistent performance loss

IV
Ramp abnormalities representing
gradual system and/or service
distortion possibilities

Fig. 2: Sequence flow implementation

calcDeviation()

PFD DB Classifier Decision Eng.

getBlock()

DataBlock

classifyDeviations()

classificationTest()Anomalies

loop

calculateDecision()

Decision
NetMapper

applyNetworkChanges()

response time at all from threshold-based

detection. Likewise, label III alarms may be

issued at least 10hrs prior to failure, whereas

reaction time to label II depends upon its

evolution behaviour. While label I is detected by

both methods, it allows no reaction time due to its

peak response. Finally, the trade-off between

accuracy of label detection and true predicted

faults is shown in the last column, where a ratio

of 1 shows 100% detection of actual faults

predictors (determined based on a NN model).

Qualitatively this means whether the decision

engine incorporated in PFD framework correctly

labels significant and nonsignificant fault

behaviours, based on historically identified fault

patterns. It can be seen that while PFD performs

exceedingly well, compared to condition-based

method, label IV leads to minor over-detection.

Conclusions

We reported a cognitive fault detection

architecture – integrated in TSDN framework –

for network assurance. The proposed framework

not only allows for simpler network management,

getting rid of multiple fixed set point definition and

maintenance; but also significantly improves the

proactive fault response time, compared to

conventional threshold-based failure detection.

The goal of this work is to introduce a generic

cognitive assurance architecture, neither limited

to presented network configuration nor to the

dataset, and application use cases across

different network layers are underway.

Acknowledgements

This work was performed in the framework of the

CELTIC EUREKA project SENDATE-Secure-

DCI (Project ID C2015/3-4), and it is partly funded

by the German BMBF (Project ID 16KIS0477K).

References

[1] A. Vela, et al., “Reducing virtual network reconfiguration

and traffic losses under multiple traffic anomalies,” Proc.

ACP, AF3E.5, Wuhan, (2016).

[2] S. Yan, et al., “Multilayer network analytics with SDN-

based monitoring framework,” J. Opt. Commun. Netw.,

Vol. 9, no. 2, p. A271 (2017).

[3] F. Morales, et al., “Incremental capacity planning in

optical transport networks based on periodic performance

metrics,” Proc. ICTON, We.A3.2, Trento (2016).

Fig. 3: Monitored layer 0 optical received power levels as a function of traversed time (aggregated to 12 hour bins).
a) Condition based fault detection, b) Data based fault detection (PFD engine). Highlighted symbols (opacity) represent
detected faults. Broken lines represent different data samples. For fault label definitions see Tab. 2

a

Undetected below set point

Alarm level

Condition based
Reactive Identification

Sample A
(Label I)

Sample B
(Label III)

Sample C
(Label II)

Sample D
(Label II and IV)R

e
c
e
iv

e
d
 O

p
ti
c
a
l
P
o
w

e
r

[d
B
m

]
n
o
rm

a
li
z
e
d
 t

o
 -

1
d
B
m

Single alarm level is used due to data
normalization (for better visualization).
In practice several levels are required

to be defined and maintained

Traversed Time [12 hour bins]

Sample A
(Label I)

Sample B
(Label III)

Sample C
(Label II)

Sample D
(Label II and IV)

b

Undetected Undetected

Data-driven
Proactive Identification

R
e
c
e
iv

e
d
 O

p
ti
c
a
l
P
o
w

e
r

[d
B
m

]
n
o
rm

a
li
z
e
d
 t

o
 -

1
d
B
m

Traversed Time [12 hour bins]

Undetected
II II & IV II

Tab. 3: Quantitative summary of Fig. 3 (first two data
columns), showing performance evaluation of data-
driven and condition-based methods. Third data column
shows ratio of detected labels in Fig. 3, and actual (true)
fault predictors (determined by the decision engine)

*assuming label IV-like symmetric behavior

Fault Label
Detection
Rate [%]

Proactive
Reaction

Time [hours]

Detected
/ True
Faults

Condition-based

L
a
b

e
l
I 100 0 1

Data-driven 100 0 1

Condition-based

L
a
b

e
l
I
I

0 0 0

Data-driven ~57 >100* 0.57

Condition-based

L
a
b

e
l
I
I
I

~45 0 0.45

Data-driven 100 10 1

Condition-based

L
a
b

e
l
I
V 25 0 .25

Data-driven ~93 96 1.25

