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Abstract—Optical functionality is being used to realize
new data center architectures that minimize electronic
switching overheads, pushing the processing to the edge
of the network. A challenge in optically interconnected
data center networks is to identify the large, bandwidth-
hungry flows (i.e., elephants) and efficiently establish the
optical circuits. Moreover, the amount of optical resources
to be provisioned during the network planning phase is a
critical design problem. Flow classification accuracy af-
fects the efficiency of optical circuits. Optical channel
bandwidth, on the other hand, directly relates to the addi-
tive-increase, multiplicative-decrease congestion control
mechanism of the transmission control protocol and affects
the effective bandwidth allocated to elephant flows. In this
paper, we simultaneously investigate the impact of two im-
portant mechanisms on data center network performance:
traffic flow classification accuracy and optical bandwidth
aggregation (i.e., the consolidation of several low-capacity
channels into a single high-capacity one by employing ad-
vanced modulation formats for short-reach communica-
tions). We develop a discrete-event simulator for a hybrid
data center network, enabling the tuning of flow classifica-
tion parameters. Our simulations indicate that data center
performance is highly sensitive to the aggregation level. We
could observe up to a 74.5% improvement in network
throughput only due to consolidating the optical channel
bandwidth. We further noticed that the role of flow classi-
fication becomes more pronounced with higher bandwidth
per wavelength as well as with more hot-spot traffic.
Compared to a random classification benchmark, adaptive
flow classification could lead to throughput improvements
as large as 54.7%.

Index Terms—Bandwidth aggregation; Congestion con-
trol; Data center; Elephant flow; Flow classification;
Machine learning; Mouse flow; TCP protocol.

I. INTRODUCTION

he past few years have seen the emergence of novel
data center proposals, taking advantage of both
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electrical and optical interconnects [1-11]. Optical inter-
connects, capable of ultra-high switching capacities, bit-
rate transparency, and low power density, are promising
candidates to meet the scale, footprint, and power density
requirements of massive data centers. Purely optical
interconnects, however, suffer from the lack of a viable,
all-optical buffering technology and relatively low recon-
figuration speeds based on commercially available optical
micro-electro-mechanical (MEMS) switches. Thus, a dual-
or multi-fabric data center design that combines the
advantages of both electrical and optical switching is
being investigated by the research community.

Data center traffic measurements point to a rich set of
traffic patterns with differing characteristics and require-
ments [12-15]. Typically, there is a very large number of
short-lived, delay-intolerant flows (mice) and a small num-
ber of long-lived, bandwidth-hungry flows (elephants). We
define elephants as flows whose total size exceeds a thresh-
old and mice as those whose size is below this threshold (in
our analysis, this classification threshold is set to 100 MB).
While the number of elephants is significantly smaller
than the number of mice in a data center, the majority of
bytes are carried in elephant flows. For the best network
behavior, the flows should be directed and scheduled to
satisfy the demands while optimizing the network perfor-
mance. In an all-electrical data center network, proper flow
placement involves attempting to distribute elephants uni-
formly across links, while in an optically interconnected
data center (as depicted in Fig. 1), higher performance
could be achieved when long-lived, high-bandwidth flows
are assigned to optical links, delay intolerant or control
flows are placed on electrical links, and proper resource
sharing is put in place [16-18].

From another perspective, flow behavior in data centers
is strongly affected by the dynamics of the network trans-
port layer, with the transmission control protocol (TCP)
being the dominant transport protocol in data centers.
Figure 2 depicts the dynamics of TCP (Tahoe variant) that
arise from the feedback congestion control mechanism en-
visioned in this protocol. In Fig. 2, a slow-start threshold
(ssthresh) is used to regulate the flow transmission rate
in two distinct regimes. Below this threshold, the flow con-
gestion (send) window size (or equivalently its transmis-
sion rate) is doubled per round-trip time (RTT). This
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Fig. 1. Possible optically interconnected data center network
architecture (T, transceiver; ToR, top-of-rack switch; MUX, wave-
length multiplexer).

denotes an exponential increase of transmission rate and is
called the slow-start phase. Once the send window size ex-
ceeds ssthresh, congestion avoidance starts and the flow
rate is incremented linearly per RTT. When a flow’s path
is saturated, congestion occurs, and the flow congestion
window will collapse to one segment worth of bytes and
its status will be switched to slow start. However, ssthresh
for the new iteration will be updated to one half of the
maximum window size the flow could achieve at the
congestion point. The additive-increase, multiplicative-
decrease (AIMD) feature of the TCP congestion window
size ensures fairness among flows and that links can oper-
ate at high utilization without being clogged due to sus-
tained congestion [19,20]. In studying the performance
of an optical data center with a combination of mice
and elephants, the impact of TCP dynamics becomes a
significant issue [17].

The main contribution of this paper is to study the joint
impact of TCP flow classification and bandwidth aggrega-
tion on the performance of a hybrid data center intercon-
nect using both electrical and optical switches. Data center
traffic is comprised of TCP mouse and elephant flows. With
an efficient classification algorithm, it is feasible to allocate
resources to flows according to their requirements
and avoid over-provisioning (e.g., allocating an optical
circuit to short mouse flows) and under-provisioning
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Fig. 2. Evolution of TCP congestion window (Tahoe variant).
Each transmission round corresponds to one round-trip time.
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(e.g., mapping a bulk data transfer to a resource-
constrained electrical switch) problems. We build upon pre-
vious studies which suggest that optimized flow classifica-
tion yields improvement in resource utilization [16,17,21].
We note that due to advances in processors, algorithms,
and with the advent of big data, machine learning is being
revived for applications in communication networks and
has the potential to address the problem of rapid and ac-
curate flow classification in data centers, in addition to
adding the possibility of adaptability to traffic dynamics.
We develop a Monte Carlo data center simulation frame-
work, enabling the tuning of flow classification parameters,
and model the performance of an adaptive flow classifier to
examine its impact on network throughput. We consider a
basic machine learning classifier as described in Section II.

The trade-offs of the various possible hardware configu-
rations for aggregating bandwidth are an important ques-
tion in current photonic implementations. The trade-offs
for cost and energy are regularly discussed. However, there
may also be additional trade-offs in network performance
that need to be considered. Therefore, in addition, we in-
vestigate the performance gains of the TCP flow classifica-
tion for a variety of scenarios with optical links of varied
granularity. Our simulations indicate that data center
throughput performance and the gains of flow classifica-
tion are highly sensitive to the bandwidth aggregation
level and the non-uniformity of network traffic.

The rest of this paper is organized as follows. In
Section II, we provide an overview of machine learning-
based traffic classification for accurate and rapid flow
assignment in data center networks. To examine the im-
pact of proper flow assignment in optical data centers,
we introduce the data center control cycle in Section III.
In Section IV, we detail our analysis framework and exam-
ine the impact of TCP flow classification on the hybrid data
center performance. We especially look at the impact of
aggregating the optical channel bandwidth from a TCP per-
formance perspective. Finally, we summarize and conclude
in Section V.

II. ApapTivE FLow CLASSIFICATION IN
Data CENTER NETWORKS

Due to the importance of elephant detection in data
center networks, a variety of flow classification methods
have been proposed [8,16,17,22]. These methods differ in
terms of the location where classification takes place as
well as the algorithm involved. From a location point of
view, elephant flows can be detected either at the edge
of the network or in its core. Helios [8] and Hedera [17]
are examples of flow classification in the core of the
network. In these proposals, all flows are monitored in net-
work switches, and statistics are pulled from switches by
the controller at regular intervals so that it can make de-
cisions per an appropriate classification algorithm. This
approach introduces significant signaling overhead and a
substantial burden on the network controller, as the statis-
tics per individual flow have to be delivered to the control-
ler. Due to the limited bandwidth between the controller
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and data center network switches as well as the limited
resources of such switches (e.g., the limited number of
flow table entries in OpenFlow switches), controller-based
flow classification is not desirable for optically intercon-
nected data centers. To cope with signaling overheads in
controller-based classification schemes, sampling methods
can be employed to decrease the load on the controller [22].
By sampling each flow and transferring a small portion
of packets to the controller, elephants can be detected if
the number of samples per flow exceeds a predefined
threshold. In order to perform classification reliably, the
sampling-based schemes need to accumulate enough sam-
ples, which may lead to unacceptable delays [16].

Unlike in-network traffic classification (i.e., classifying
flows with the help of the network controller), classification
at the edge of the data center network holds promise for
low-overhead and speedy traffic classification. With in-
network monitoring, flow behavior can be biased by net-
work congestion, misleading the classifier, whereas flow
classification at the edge can be more accurate due to de-
coupling the application behavior and network dynamics.
Curtis et al. [16] propose end host-based elephant detection
where classification is performed at the operating system
(OS) level by monitoring end host socket buffers. When the
socket buffer for a TCP flow exceeds a threshold, it is clas-
sified as an elephant. This requires a slight modification to
the server OS for introducing buffer monitoring and
elephant detection functions.

With the recent advances in fully programmable net-
work interface cards (NICs), flow classification can now
be performed on intelligent NICs that are equipped with
hundreds of processing cores [23]. This would allow for
more advanced edge-based classification algorithms with-
out compromising the performance of the server operating
system. Offloading classification procedures to intelligent
NICs enables low overhead machine learning-based flow
classification for improved speed and accuracy, in addition
to adding adaptability to traffic dynamics. Machine learn-
ing is a form of computational intelligence that provides
machines with the ability to learn and adapt without being
explicitly programmed. Neural networks have existed as a
form of machine learning since the late 1950s. However,
they have only become useful for solving perceptual prob-
lems over the past decade. This has been due to algorithmic
breakthroughs and the increase in applicable computa-
tional power from single instruction multiple thread
(SIMT) graphics processing units (GPUs) and other pro-
cessors. Programmable NICs have flexible multiple in-
struction, multiple data (MIMD) multi-core structures, and
can host machine learning algorithms to solve a variety of
networking problems [24—26]. In this section, we propose a
basic machine learning-based traffic classifier that can be
implemented on a programmable NIC for handling real
data center traffic at very high speeds [27].

As shown in Fig. 3, the algorithm that we use for
flow classification consists of three key parts: (1) the
Hash-Based Classifier, which checks whether packets
belong to a classified flow (this part runs at a high speed
with low latency); (2) the Feature Vector Storage, which
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Fig. 3. High-level classification algorithm: The hash-based clas-
sifier is the only section that needs to operate at a line rate.

stores flow features using packets from unclassified flows
(feature vectors are required to accumulate enough infor-
mation to allow the machine learning algorithm to make a
flow classification decision); and (3) the Neural Network,
which classifies complete feature vectors. The feature vec-
tor is based upon previous work [28]. It includes the five-
tuple (source IP address, destination IP address, source
port, destination port, transport layer protocol), packet
sizes, and a set of intra-flow timings within the first 40
packets of a flow (or roughly the first 30 TCP segments).
This helps to improve the training speed and avoid the
disappearing gradient problem when using gradient
descent backpropagation [29-31].

The type of neural network used in our classifier is a
fully connected multi-layer perceptron (MLP) with four
hidden layers. MLPs are relatively simple to implement
in high-dimensional situations without base knowledge
of the intermediate features. MLPs have high levels of true
negative classification, which is critical in order to ensure
that mice do not flood the optical interconnect [32]. Due to
the nature of mouse and elephant flow distribution in data
centers (i.e., an overwhelming amount of mice compared to
a much smaller number of elephants), there is a class im-
balance problem. This can be overcome by training with
a non-proportional amount of mouse and elephant flows.
To ensure adaptability, we use an internal-self supervised
teaching mechanism. We note that the accuracy, speed, and
overheads of the neural network classifier would depend on
the complexity of the machine learning algorithm, network
flow processor hardware architecture, and implementation
details. We have successfully assessed the performance of
a baseline MLP-based traffic classification algorithm using
real anonymized traffic from a university data center
network. The results of this analysis are described in a
separate publication [27]. We plan to perform more experi-
ments for distinguishing trade-offs in classifier perfor-
mance. In this paper, we model the performance of our
classifier from the accuracy perspective and examine its
impact on the efficiency of an optically interconnected data
center.

From a network control perspective, we combine
machine learning capabilities using edge intelligence
with software-defined networking (SDN) to achieve net-
work programmability and flexible resource allocation.
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Fig. 4. Adaptive flow classification within SDN
framework.
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Figure 4 provides a high-level diagram of network level
interactions among various entities within the data center.
Upon the start of a traffic flow in a server, data packets
are inspected by the server’s intelligent NIC, where the
machine learning algorithm is implemented (including the
hash-based classifier, feature vector storage, and neural
network classification components). The intelligent NIC en-
ables flow classification at the edge of the network. Once a
flow is classified as an elephant, the SDN controller needs
to trigger its elephant resource allocation routine for that
flow at a proper scheduling instance. For this to become pos-
sible, the NIC manipulates the virtual LAN (VLAN) tag
field of the newly detected elephant’s packets (or any other
unused field of the packet header that can be employed for
OpenFlow matching) and sets it to a predefined value.
Based on the VLAN tag content, the OpenFlow switches
along the default path of the flow (top-of-rack (ToR)/core
switch) perform matching in their flow tables and direct
the first packet of the elephant flow they receive to the
SDN controller. The controller identifies the new elephant
flow using the VLAN tag information, performs resource
allocation as appropriate, and reports its decision to the
OpenFlow switches in terms of a set of routing rules to
be installed as new flow entries in their flow tables. From
this point on, the rest of the elephant flow’s data packets
are forwarded according to the updated flow tables.

III. OpticAaL DATA CENTER ARCHITECTURE
AND SCHEDULING

Our goal is to study the impact of TCP flow classification
on the performance of optical data center interconnects
with varied bandwidth granularity. Optically assisted data
centers are interesting in the sense that they enable net-
work performance to be enhanced without resorting to
expensive full-bisection bandwidth electrical intercon-
nects. In an example optical data center network as
depicted in Fig. 1, optical and electrical fabrics work
synergistically to accommodate flows with different
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performance requirements. An under-provisioned electri-
cal network provides all-to-all connectivity among comput-
ing nodes, enabling the transport of short-lived, delay-
sensitive flows and control messages across the network.
In addition, an optical circuit switching fabric is provi-
sioned to enable point-to-point, high-bandwidth connectiv-
ity by accommodating long-lived bulk data transfers.
Unlike the electronic switches that enable buffering and
switching at nanosecond speed, high port count optical
switches are usually based on MEMS technology and sup-
port reconfiguration speeds on the order of tens of millisec-
onds. Without loss of generality, in this paper, we assume
that the electrical and optical networks are non-blocking
and model each as a single switch. All server racks within
the data center are connected to both electrical and optical
networks with arbitrary numbers of electrical and
optical links.

Scheduling traffic flows in a data center has a significant
impact on the architecture performance. We consider the
data center operation to be governed by control cycles
[7-9]. Each control cycle involves (1) measuring current
traffic demands, (2) estimating traffic for the newly started
cycle, (3) calculating the optimal optical network topology,
and (4) reconfiguring the network as required. Figure 5
depicts the scheduling tasks within a control cycle. The
control cycle comprises a mandatory sequence of tasks and
a secondary sequence should the optical circuit-switched
network require reconfiguration. The control cycle should
be long enough to compensate for scheduling and reconfig-
uration overheads.

A control cycle starts by measuring the number of
elephant flows each rack has destined to other racks. Note
that traffic classification becomes important here, as mis-
takenly perceived elephants can lead the scheduler to set
up inefficient circuit paths, resulting in congestion in parts
of the network and underutilization elsewhere. Once an
elephant matrix has been constructed (with each entry de-
noting the number of elephants flowing between a pair of
racks), the traffic estimation routine starts. A flow’s cur-
rent sending rate says little about its natural demand in
an ideal non-blocking network [17]. Hence, the goal of traf-
fic estimation is to make more intelligent flow assignment
decisions by knowing the natural max—min fair band-
width requirements of flows. TCP’s AIMD dynamics try
to achieve such a fairness. To calculate the share of band-
width each rack can have to talk to other racks, the sched-
uler considers no host-imposed limitation (e.g., due to host

4. Notify Circuits
Down

5. Change Topology

6. Notify Circuits Up

Fig. 5. Control cycle in an optically interconnected data center
network.
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disk access and processing) and only assumes flow rates
get limited at the ToR level. The algorithm proposed in
[17] can be used to estimate the traffic demands between
rack pairs.

Based on the estimated traffic, the scheduler passes
to new optical topology calculation. It greedily calculates
a maximal matching between racks considering the traffic
demands and the number of optical ports per rack. The
greedy nature of the matching algorithm arises from the
fact that in each iteration, circuit(s) will be set up between
two nodes that have the highest estimated traffic demand.
The output of the matching phase is a matrix that identi-
fies the number of circuits (fibers) between each rack pair.
Note that as data center traffic exhibits asymmetry, the cir-
cuit establishment is not symmetric. That is, if there are n
circuits between rack i and rack j, it is not necessary to
have the same number of circuits in the reverse direction.
It is possible that some of the calculated circuits have al-
ready been established in a previous control cycle. There
will not be a reconfiguration penalty for such circuits.
While an optical circuit is being established, it will be inac-
cessible and cannot be used for data transfer. If a circuit
has to be torn down, the flows using that circuit are mi-
grated to the electrical portion of the network. When opti-
cal circuit establishment is complete, all flows that can use
the circuit will try to exploit it for an enhanced share of
bandwidth. In our study, we assume mice can share optical
links with elephants due to potentially higher available
bandwidths and thus faster completion times. During
reconfiguration times, both mice and elephants can share
the electrical network resources. Although the study of dif-
ferent resource-sharing policies in optically interconnected
data centers is not within the scope of this paper, existing
research suggests that sharing resources among different
flow classes has the potential to improve the overall
network performance [18].

Besides the abovementioned scheduling tasks that are
carried out at the beginning of each control cycle, the sched-
uler performs some regular tasks during every time slot.
These include handling new arrivals, classifying flows, and
servicing all flows that exist within the data center. To han-
dle arrivals, the scheduler considers the newly arrived
flows during a time slot and assigns them to links. This en-
tails finding the uplink (link from the source ToR to the
core network) and the downlink (link from the core network
to the destination ToR) with the maximum free capacity.
Further, the scheduler considers all unclassified flows dur-
ing any time slot. If an unclassified flow has sent segments
beyond a predefined threshold (in our study, a flow can be
classified if it has sent out at least 30 segments), the sched-
uler makes a decision on whether the flow should be
treated as an elephant or not.

The service phase in each time slot involves detecting all
links (electrical/optical) that reach the congestion point and
performing the TCP Tahoe congestion control mechanism
accordingly. When considering congestion for optical links,
each wavelength is treated separately. A fiber link may
still be far from its saturation point, but one or some wave-
lengths in such a fiber may have their capacity exhausted
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by TCP flows. After detecting congested links, the states of
all affected flows will be updated, as explained in Section I.
That is, they enter the slow-start phase with a congestion
window size equal to the maximum segment size (MSS)
and ssthresh equal to one half of congestion window size
at the congestion point. Once congestions have been re-
solved, flows are shuffled (to implement fairness in service)
and their desired number of segments (equal to the mini-
mum of the number of segments in the send window and
the number of outstanding segments of the flow) is trans-
mitted across the network.

IV. Jomt ImpacT OF FLow CLASSIFICATION
AND BANDWIDTH AGGREGATION

In this section, we study the interplay of optical band-
width granularity settings and TCP flow classification ac-
curacy in an optically interconnected, hybrid data center
network. We examine how the choice of optical channel
bandwidth affects network throughput due to TCP dynam-
ics. We also study the conditions necessary for high classi-
fication impact by tuning traffic characteristics and
bandwidth granularity. We will see that depending on
these two factors (i.e., traffic uniformity and optical chan-
nel bandwidth), flow classification can have a moderate
to high impact on the overall data center network
throughput.

For our study, we implemented a flow-level, discrete-
event network simulator that can scale to thousands of
servers. The network is modeled corresponding to Fig. 1,
where all server racks connect to both electrical and optical
switching fabrics. We assume an electrical network where
hosts can perform non-blocking, all-to-all communications.
The optical fabric in our simulator is modeled as a single
MEMS switch, enabling fiber port to fiber port high-
bandwidth connectivity.

We avoid performing packet-level simulations, as tracing
network behavior at the packet level makes the analysis
intractable for the several hundreds of thousands of flows
that we consider. As a consequence of flow-level analysis,
we cannot capture the impact of different packet sizes
and buffer behaviors. Furthermore, we do not consider
the bandwidth consumed by TCP ACKs, which is a small
fraction of the data center bandwidth. Although these
assumptions make our results relatively optimistic, we find
such provisions necessary to study the flow classification
impact at the scale of thousands of servers.

Our analysis models the behavior of a network with TCP
traffic. The simulations proceed in a time-slotted fashion
(discrete time ticks). Each time slot corresponds to a typical
data center RTT of 100 ps [17]. During each time slot, the
simulator performs several tasks, including accepting new
flows into the system as well as updating flow rates
based on their status and network congestion. We model
the TCP AIMD principle and consider slow-start and
congestion-avoidance phases when increasing flow rates.
The slow-start threshold (ssthresh) is set to 64 kB. The
TCP Tahoe congestion control mechanism is implemented
in the “Service()” function denoted in Fig. 6. In this
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1 for IT =1: ControlCycles

2 Calculate ElephantCount(N,, N;)

3 EstimatedTraf fic + Estimate(ElephantCount)
4 MatchingMatriz < Match(EstimatedTraf fic)
5 forT=1: MECT

6 time < (IT —1) x CC +T

7 Arrival(); Detect(); Service()

8 if MatchingMatriz implies changes

9 MigrateToElectrical(Af fectedClircuits)
10 for T = MECT +1: MECT + (RT/RTT)
11 time « (IT —1) x CC + T
12 Arrival(); Detect(); Service()

13 Fiber Assignment(NewClircuits)

14 MigrateT oOptical()

15 for T = MECT + (RT/RTT) +1: CC
16 time « (IT —1) x CC+T

17 Arrival(); Detect(); Service()

18 else

19 for T = MECT +1:CC

20 time+ (IT—1)xCC+T

21 Arrival(); Detect(); Service()

Fig. 6. High-level pseudocode of the data center simulator.

function, we make use of the mapping information that re-
lates flows to links. In other words, for each individual link
in the network (either electrical or optical wavelength link)
during a new time slot (with duration equal to RTT), we
project the required bandwidth based on the current win-
dow size/remaining segments of all flows that share it. If
the aggregated demand across the link equals or exceeds
its capacity, the link is treated as congested. Once all con-
gested links have been detected, we update all flow rates
per congested link and push them to the slow-start phase
with a new ssthresh and window size equal to one segment.
Finally, for each flow in the system, the desired number of
segments is transmitted across the network. As conges-
tions have been resolved before this step, no congestion will
occur based on this bandwidth assignment.

Figure 6 illustrates the high-level structure of our data
center simulator (with N, racks), where ControlCycles de-
notes the number of scheduling cycles that the network
performance is simulated. CC is the number of time slots
(i.e., RTTs) within a cycle. MECT is the number of time
slots required for traffic measurement, estimation, and
running a maximal matching algorithm. RT denotes the
number of time slots for reconfiguring the optical switch
hardware. The simulator accepts a traffic file as its input
that includes the list of flows that arrive at the network
during the course of the simulation. Each flow is character-
ized by source and destination racks, arrival time, and size.
We are inspired by empirical studies on data center traffic
patterns to populate the input traffic file [13]. We consider
a Poisson flow arrival process. Each server in our simula-
tions is assumed to generate, on average, 20 new flows
per second (with 1 Gbps network interface capacity) [16].
Based on this, during each time slot, we examine each
server to determine if a new flow has been generated.
We assume 80% of flows remain within the rack where they
are generated. Our traffic generation mechanism ensures
that a flow’s source is uniformly picked from the set of
existing racks. As per destination, we model hot-spot com-
munications in our data center. We assume that a flow is
routed to a group of hot-spot racks (a small fraction of data
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center racks) with a probability of 0.9 and uniformly to any
other rack with a probability of 0.1. If a flow is destined to
the hot-spot group, its destination rack will be uniformly
picked from the set of hot-spot racks. We denote the num-
ber of hot-spot racks as hot-spot size (HSS) and examine
HSS = 4 and HSS = 8. For flow size distribution, we con-
sider a rounded Pareto distribution. The flow size in bytes
is calculated as

Xm

Ul/aJ s

L= (1)

where U is a random variable uniformly distributed on
(0,1), and | | represents the floor function. x,, is the scale
factor and denotes the minimum flow size, and « is the tail
index. Based on [13], we consider x,, = 100 B and a = 1/3,
which leads to significant variability in flow size (infinite
mean and variance). Once the flow size is determined,
we divide L by the TCP maximum segment size (MSS =
1500 B) to determine the number of segments a flow con-
tains. Our simulator considers MSS as the data unit.

We use two conditional probabilities to model the classi-
fication behavior. P,, is the probability that a flow is clas-
sified as an elephant given that it is actually an elephant
flow (i.e., true positive rate or elephant detection rate), and
P, is the probability that a flow is classified as a mouse
given that it is actually a mouse flow (i.e., true negative
rate or mouse detection rate). When a flow is to be classi-
fied, we know its actual type due to its size in the input
traffic file (again, we consider flows smaller than 100 MB
as mice and as elephants otherwise). We generate a ran-
dom number z uniformly over (0,1). If the flow is a mouse
and u < P, then it will be classified correctly as a mouse.
If u > Py, it will be misclassified as an elephant. If the
flow is an elephant and u < P,,, then it will be classified
correctly as an elephant. If u > P,,, it will be misclassified
as a mouse. Once the flow is classified (as either mouse or
elephant), it will be migrated to the optical network should
there be an optical circuit to its destination already
in place.

In our simulations, we consider a data center with 32
racks of 48 servers (1536 hosts in total). We simulate the
data center network for 60 control cycles. Each control cycle
comprises 10,000 time slots. Ten percent of the control cycle
duration is associated with circuit scheduling and reconfig-
uration overheads (100 ms). The reconfiguration overhead
is an important parameter that affects the utilization of op-
tical circuits. In general, various parameters affect the
overhead duration, including hardware reconfiguration
time, controller computational power, complexity of re-
source allocation algorithms, and the number of flows to
be handled. Previous work points to scheduling intervals
on the order of 100 ms or less for scheduling elephant flows
[8,17]. Here we consider 100 ms as a typical overhead
value, which comprises 75 ms computation and 25 ms
hardware reconfiguration periods.

Each ToR switch in our analysis is equipped with 10 bidi-
rectional electrical links and a bidirectional optical link
with either 1 or 4 wavelengths. With a 10 Gbps network
interface capacity per server, it is reasonable to consider
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electrical link bandwidths of 10 Gbps and optical channel
capacities of 25 Gbps or beyond. Simulating TCP perfor-
mance in a data center network with such capacities would
be cumbersome due to the excessively large number of traf-
fic flows. A server of 1 Gbps capacity is reported to generate
20 new flows per second [16]. A server with ten times more
capacity can generate a significantly larger number of
flows. As in [16], we scale down link capacities and traffic
demands simultaneously to make the simulations trac-
table. To scale down traffic, we have two options. One is
to reduce the number of flows and the other is to scale down
their size. Since we would like the ratio of traffic demand to
network capacity to be preserved in our simulations, we
only manipulate one dimension (i.e., the flow arrival rate).
By preserving the size of the flows, we ensure that an indi-
vidual flow’s intrinsic demand is not affected in the scaling
process.

We emphasize that TCP dynamics (as depicted in Fig. 2
for one flow) depend on several factors, including link band-
width, number of flows sharing a link, their arrival times
and sizes, and the routing mechanism across the network.
By scaling down the network parameters, we may not
achieve the exact performance (multiplied by a scaling fac-
tor), but our studies have shown that the trends we discuss
in this paper are independent of network scaling. Hence,
we consider electrical links with 1 Gbps capacity and opti-
cal links with 4 channels of 2.5 Gbps capacity (or a single
channel of 10 Gbps capacity) to represent a scaled-down
version of a real data center network (with 10 Gbps elec-
trical links and 25 Gbps or possibly 100 Gbps optical
wavelengths). The statistics reported in this paper are col-
lected from the latter 40 control cycles of each simulation.
Furthermore, each data point corresponds to the average of
five simulation runs.

Based on our machine learning experiments [27], we set
P, t0 0.95 and vary P, (i.e., the elephant detection rate)
between 0.5 and 0.95. Figures 7 and 8 depict the network
throughput versus the elephant detection rate (EDR) for
hot-spot sizes of 4 and 8 server racks, respectively. With
the bandwidth settings in our examination and the
mouse detection rate fixed at 0.95, varying the elephant
flow classification accuracy does not exhibit remarkable
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Fig. 7. Throughput versus elephant detection rate for HSS = 4
and four wavelengths per fiber (with the mouse detection rate
fixed at 0.95).
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Fig. 8. Throughput versus elephant detection rate for HSS = 8
and four wavelengths per fiber (with mouse detection rate fixed
at 0.95).

changes in throughput. However, we will soon notice that
performance gains could be significant compared to a
random classification policy when the optical bandwidth
becomes more abundant. According to Figs. 7 and 8, the
optical network throughput sees a 13.5% increase for
HSS = 4 and 10.1% for HSS = 8 over the range of EDR val-
ues. This improvement can be attributed to a more efficient
optical circuit setup due to better identifying long-lived
flows. Furthermore, there exists a trade-off in the sense
that an increase in the utilization of optical links results
in a lower utilization of the electrical network.

Compared to HSS = 4, a more uniform traffic distribu-
tion with HSS = 8 allows for more connections to be set
up simultaneously. The throughput increases significantly
with doubling the number of hot-spot racks. The improve-
ment is mostly observed in the electrical section of the
network, which favors all-to-all connectivity. With an in-
crease in HSS, the electrical throughput (averaged over
elephant detection rates) is increased by 59.5%. The improve-
ment in optical network throughput is 23.8%, and the overall
data center network sees an improvement of 43.1%.

As we aim at studying traffic classification in conjunc-
tion with optical bandwidth settings in the network, we
examine the impact of flow classification accuracy when
enhancing the optical channel bandwidth in hybrid data
centers. Fatter optical pipes (such as a consolidated
100 Gbps wavelength instead of four parallel 25 Gbps
links) are more expensive, but it is interesting to note the
performance with respect to TCP dynamics. Please note
that our analysis assumes interconnectivity beyond the
rack level and hence does not consider the inefficiencies as-
sociated with link aggregation protocols within the ToR
switch. The downlinks of a ToR switch are assumed to op-
erate at 10 Gbps (connected to servers with 10 Gbps inter-
faces), whereas the optical uplinks can operate at 25 Gbps
(baseline case) or 100 Gbps (aggregated case). In either
case, some electronic aggregation and framing should be
performed. By optical aggregation, we do not consider an
intermediate step going from 4 x 25 to 100 Gbps. Instead,
we are interested in the possibility of employing advanced
modulation formats in data centers to achieve higher
capacity per channel. Current optical links in data centers
carry binary modulated data. However, recent research
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points to the feasibility of higher-order modulation formats
suitable for short-reach applications [33,34]. With proper
bandwidth settings, modulation schemes, processing, and
drop in price points, it is feasible to achieve 100 Gbps capac-
ity per channel in optically interconnected data centers.

With high-capacity wavelengths, it is feasible for flows to
achieve higher transmission rates, as links will get con-
gested less frequently. Figure 9 depicts the data center
throughput for HSS = 4 (focusing on the optical and elec-
trical sections of the network), comparing two scenarios.
In one case, each fiber link carries four channels of 2.5 Gbps
capacity (scaled-down version of 4 x 25 Gbps). In the other
case, a fiber is assumed to include one wavelength channel
only with a capacity of 10 Gbps (scaled down version of
1 x 100 Gbps). Our simulations point to the significant
improvement of network performance with optical band-
width consolidation. The majority of improvement in
throughput comes from the optical section of the network
that undergoes bandwidth aggregation. Optical band-
width aggregation increases the average optical network
throughput from 53.5 to 135.6 Gbps, corresponding to a
153.2% increase. The minimum and maximum improve-
ments achieved in the overall network throughput due
to optical channel bandwidth aggregation are equal to
57.9% and 74.5%, respectively.

Apart from performance gains, the impact of elephant de-
tection accuracy on the optical network throughput is
stronger for the case of aggregated optical bandwidth.
With one wavelength of 10 Gbps per fiber, the throughput
is equal to 121.7 Gbps for EDR = 0.5 and 148.9 Gbps for
EDR = 0.95. This translates to a 22.4% improvement as
compared to a 13.5% improvement using 4 x 2.5 Gbps links.
According to Fig. 9, the optical fabric plays a significant role
in the data center network with bandwidth aggregation. As
a result, missing out on the low-congestion optical circuits
due to classification inaccuracy and imperfect matching
could incur a stronger penalty compared to the case where
optical and electrical networks exhibit similar throughputs.

To quantify the combined advantages of adaptive flow
classification (considering mouse detection rate in addition
to elephant flow detection rate), we define the throughput
improvement factor as the relative increase in the network
throughput with adaptive, machine-learning-based flow
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Fig. 9. Impact of bandwidth aggregation on electrical and optical
network throughput for HSS = 4.
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classification (as described in Section II) compared to ran-
dom flow classification. In adaptive flow classification, a
flow can be classified using two conditional probabilities
(0.95 mouse detection rate and a variable elephant detec-
tion rate) once a certain number of TCP segments (30 in our
examination) have been examined by the network interface
card. In random classification for flows that are longer than
the 30 MSS threshold, a flow is classified with a probability
corresponding to the proportion of mice in the data center
traffic flow set. We consider this probability to be 0.9
(typical ratio of mouse flow count to total flow count based
on data center measurements). If a flow has to be classified,
it will be regarded as a mouse with a probability of 0.9.

Figure 10 depicts the improvement that can be
achieved due to adaptive classification for HSS = 4. With
4 x 2.5 Gbps wavelengths per fiber, an average improve-
ment equal to 8.6% is achieved. However, the impact of
classification is much more significant with bandwidth ag-
gregation. With 1 x 10 Gbps per fiber, the improvement is
40.3% for EDR = 0.5 and 54.7% for EDR = 0.95 (average
improvement: 47.7%). This example shows that flow clas-
sification is highly sensitive to the bandwidth settings
within the data center.

We also study the impact of optical bandwidth aggrega-
tion for HSS = 8. Figure 11 depicts the optical and electri-
cal network throughput versus EDR for 4x25 and
1 x 10 Gbps optical link configurations. As for the case of
HSS = 4, the majority of improvement in throughput
comes from the optical network. With bandwidth aggrega-
tion, a maximum overall network throughput of 245.2 Gbps
could be achieved. Comparing the cases of one and four
wavelengths per fiber, the minimum and maximum net-
work throughput improvements are equal to 37.8% and
46%, respectively.

Finally, Fig. 12 depicts the improvement that can be
achieved due to adaptive classification as compared to ran-
dom classification for HSS = 8. With 4 x 2.5 Gbps links,
an average improvement equal to 7.8% is achieved. With
bandwidth aggregation, the improvement is much higher
and an average improvement of 35.3% could be achieved.
Comparing hot-spot sizes of 4 and 8, we observe that im-
provements due to bandwidth aggregation are less signifi-
cant for a larger HSS value. In other words, more uniformly
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Fig. 10. Throughput improvement percentage due to classifica-
tion accuracy for HSS = 4.
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Fig. 11. Impact of bandwidth aggregation on electrical and
optical network throughput for HSS = 8.
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Fig. 12. Throughput improvement percentage due to classifica-
tion accuracy for HSS = 8.

distributed traffic makes the performance less sensitive to
the faulty detection of elephants and optical circuits be-
come less crucial. In the latter case, more optical circuits
are established, although with a lower utilization, and the
traffic has more opportunities to be delivered. Hence, miss-
ing out on one specific optical circuit will have a less sig-
nificant impact compared to missing out on one optical
circuit with HSS = 4. It would be interesting to quantify
this trend by varying HSS over a range of feasible values.

V. CoNCLUSION

Optical switching is attractive for the emerging massive-
scale data centers because of its bandwidth, power, and
footprint advantages over electronics. A challenge is how
to integrate such a technology into traditional, electroni-
cally switched architectures and optimize the overall net-
work efficiency and performance. The optical fabric is best
suited for stable and long-lived elephant flows. The accu-
racy of the correct detection of such flows and the amount
of bandwidth allocated to them upon detection are two
critical questions that we addressed in this paper.

Our simulations, modeling the TCP dynamics arising
from the AIMD mechanism for congestion control, pointed
to the crucial impact of optical bandwidth aggregation
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(i.e., the consolidation of several low-capacity channels into
a single high-capacity one) on performance. The network
throughput could be increased by as large as 74.5% when
four wavelength channels within a fiber were aggregated
into a single channel of four times more capacity. We also
noticed that flow classification is more significant in cer-
tain scenarios. The role of flow classification accuracy
becomes significant with higher bandwidth aggregation
due to the greater penalty of missing out on the valuable
high-capacity, low-congestion resources. Furthermore, traf-
fic patterns exhibiting higher non-uniformity benefit more
from accurate classification, as in such scenarios, scarce
circuits play a critical role in data transfers. Compared
to a random classification benchmark, adaptive flow clas-
sification could lead to throughput improvements as large
as 54.7%.

While our analysis focused on a specific optical data
center architecture and schedule, our methodology can be
applied to many different scenarios, and we plan to extend
our analysis to other optically interconnected data center
designs. From a modeling point of view, it will be helpful
to envision mechanisms for accommodating buffer behav-
ior and actual link bandwidths without sacrificing scalabil-
ity. Future work should also investigate the trade-offs
between latency, power consumption, and accuracy of the
machine learning-based flow classification. Furthormore,
an interesting extension of this work could be the study
of more advanced predictive analytics, where instead of
binary flow classification, a richer set of information, in-
cluding estimated flow sizes and the dependencies of flows
within applications, is passed on to the data center network
scheduler.
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