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Abstract—In current cloud systems, their monitoring relies
strongly on rule-based and supervised-learning-based detection
methods for anomaly detection. These methods require either
some knowledge provided by an expert system or monitoring data
to be labeled as a training set. In practice, the systems behavior
changes over time. It is difficult to adjust the rules or re-train
detection model for these methods. In this paper, we present an
Adaptive REal-time update uNsupervised Anomaly prediction
system (Arena) for cloud systems. Arena uses a clustering tech-
nique based on a density spatial clustering algorithm to identify
clusters and outliers. We propose two prediction strategies to
improve the ability to predict anomaly and a real-time update
strategy by adding new monitoring points into Arenas model.
To improve the prediction efficiency and reduce the scale of the
model, we adopt a pruning method to remove redundant points.
The anomaly data used in the experiments was collected from the
Yahoo Lab and the component based system of enterprise T. The
experimental results show that our proposed methods can achieve
high prediction accuracy compared to existing methods. Real-
time update strategy can improve the prediction performance.
The pruning method can further reduce the scale of the model
and demonstrates the prediction efficiency.

I. INTRODUCTION

In recent years, cloud computing has become the most
desired technology for the IT industry. Large enterprise data
centres have been widely used in web services and applica-
tions such as E-commerce, distributed multimedia, and social
networks. However, the enterprise data centres are prone to
performance anomalies due to their complexity in structure
and shared resources. For example, Cloud provider Amazon
Web Services (AWS) reported an outage between 2:13 AM
and 7:10 AM PDT on September 20, 2015, when users were
unable to reach popular online services like Netflix, Tinder,
Airbnb, Reddit, and IMDDb[1]. The origin of the failures turned
out to be a large number of errors on read and write operations
for the Amazon DynamoDB service in the US-East Region.

The purpose of anomaly detection methods is to detect the
outliers in enterprise data centres. The major drawback of
these approaches is that they can only detect but not pre-
vent anomalies. Comparatively, proactive methods can predict
anomalies before they occur, which allows actions to be taken
to prevent anomalies from happening or reduce the damage
from incidents.
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Achieving efficient anomaly prediction through the moni-
toring system is a challenging problem. One reason is that
the amount of monitoring data is produced by a number of
nodes in the distributed enterprise system and it is impractical
to obtain labelled training data from production cloud sys-
tems. Second, a large-scale enterprise data center often runs
hundreds of concurrent applications. Since the system being
monitored is a black box system, the anomaly detection is only
based on monitored data[2]. Last, because system’s behavior
may change over time, the prediction model needs real-time
update to prepare for the impact of new anomalies.

The Arena system uses three steps to analyze monitoring
data captured in contiguous fixed-length time slots. Figure 1
depicts an overview of the Arena system. The first step is
to extract different features in contiguous time slots which
can capture the status of system. The second is to use all
the features obtained from the last step to train the model of
Arena or to predict an anomaly based on the model. In this
step, outliers are identified using a robust clustering algorithm,
based on a density spatial clustering algorithm. The clustering
algorithm is a completely unsupervised method, which can be
directly used in monitoring a system without labelled dataset.
In the third and final step, after anomaly prediction the new
monitoring data will be used to refine and update the model
of Arena system. In this step, we propose a pruning method to
reduce the redundancy. The main contribution of Arena system
is its ability to work in an entirely unsupervised fashion and
in a real-time manner.

We conducted anomaly prediction experiments on two sys-
tem monitoring datasets: Yahoo Lab[3] and the monitoring



data from a component-based system of the enterprise T'.
Experimental results demonstrate that for the Yahoo Lab
dataset, we can achieve a prediction precision of 88.30%
and F value of 0.855. For the component-based system, the
Arena system achieves the highest prediction F value of 0.837
compared to other methods. Experimental results show that
the pruning method can reduce the scale of the model and
improve the prediction speed.

The major contributions of this paper can be summarized
as follows:

« We propose Arena, an unsupervised system for anomaly
prediction for cloud systems. It works in an entirely
unsupervised fashion, which means that it can be directly
used in any monitoring system without any labelled
dataset.

« We present a real-time and pruning strategy in the Arena
system. The Arena system can refine its model when it
processes new monitoring data. The pruning method can
reduce redundancy and improve prediction speed.

« We validate and compare the effectiveness of the Arena
system through experiments on real monitoring data
based on cloud systems.

The remainder of this paper is organised as following:
Section 2 presents the detailed design of Arena system. In
Section 3 we conduct anomaly prediction experiments on
different system monitoring datasets and demonstrate the
experimental evaluation results. Section 4 presents state of
the art of unsupervised anomaly prediction in the literature.
Finally, in Section 5, we conclude this paper and our future
work.

II. SYSTEM DESIGN

In this section, we present the design details of the Arena
system. We first discuss monitoring data standardisation and
feature extraction. We then describe our unsupervised anomaly
prediction model training algorithm that can train anomaly
prediction models without a labelled dataset. Next, we present
our anomaly prediction strategies. Finally, we present the real-
time update strategy and pruning strategy in the Arena system.

A. Standardization and Feature Extraction

As shown in Figure 1, we first preprocess the raw monitor-
ing data and extract a number of features from the standardized
data.

There are several common preprocess functions to convert
raw data into a representation which can be used as the
input for the prediction models, e.g. standardisation, normal-
isation and binarization. For the Arena system, we adopt
the standardisation as the process transformer. Standardisation
is the process of re-scaling the data distribution through
centering its mean to zero and scale its variance to unit value.
Standardisation can unify different monitoring datasets with
various means and variants and reduce the range of parameters
selection, which is critical to the selection of parameters.
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Furthermore, the standardisation will not affect the detection
of abnormal points since the outliers will still have significant
distance to other points. The standardisation equation is shown
in Equation 1.
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Where x; denotes the value of the i-th attribute, and z;
represents the average value of the i-th attribute value in the
initial training data. s denotes the standard deviation of the
i-th attribute value. 2; represents standardisation results of the
i-th attribute.

After standardisation, we use the window sampling method
to extract features. The method can reduce the noise of
monitoring data which helps to extract more efficient features.
We compute average value, amplitude, and amplitude rate
as our features, which are often used in anomaly prediction
models[4]. We set the width of the sampling window to be w,
and compute the average value using the following equation:
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Where value;, denotes the monitoring value at time ¢;. The
amplitude feature can be computed as shown in Equation 3.

Amplitude = max(valuey,) — min(valuey,) 3)

The amplitude rate computation equation is shown in Equa-
tion 4.

Amplitude
4
AveValue @

The average monitoring value presents the particular value
in the current period. The averaging method is used to smooth
the data to reduce the impact of noise. Amplitude reflects
the fluctuation in the window. When two windows get the
same average monitoring value, it may be the case that a
window has significant volatility, while the other window
does not. The amplitude ratio is the ratio of the amplitude
to the average monitoring value, presenting the magnitude of
volatility compared to the window sampling. The reason that
we use amplitude ratio, is that, the amplitude alone is not
sufficient to determine the level of abnormality. For example,
two windows may have the same amplitude. If one window
has a significant larger average value than the other, then the
level of its abnormality is lower.

Amplitude Rate =

B. Anomaly Prediction Model Training

We adopt a density-based spatial clustering algorithm,
which is similar to the density-based spatial clustering of
applications with noise (DBSCAN) algorithm [5], to train
the anomaly prediction model in the Arena system. The
DBSCAN algorithm groups together points that are closely
packed together. Data points that lie alone in low-density



regions are marked as outliers. The prediction model training
is also based on the density-based spatial clustering algorithm.

The Arena system uses the historical monitoring data as its
training dataset. All historical monitoring points are classified
into three categories: core points, edge points, and outliers.
The prediction model training requires only two parameters:
minPts and eps. A point p is a core point if at least minPts
points are within the distance of eps. A point p is an edge
point if at least one point is within the distance of eps. The
rest points, which are not reachable from any other point, are
outliers. In the training process, the core points and edge points
are retained as the model of Arena system.

Algorithm 1 Anomaly Prediction Model Training
Require: D, eps, minPts
Ensure: D with Label

1: function TRAIN(D, eps, minPts)

2: List < Points > templates < ()

3: for : = 0 — D.length do

4: P <« DJi]

5: if P is not visited then

6: P is visited

7: Neighbors < REGION(P, eps)

8 if size(Neighbours) < minPts then
9: Label P as outliers

10: ADD_TEMPLATE(templates, context)
11: else

12: Label P as core

13: EXPAND(Netghbours, eps, minPts)
14: end if

15: end if

16: end for

17: end function
18: function EXPAND(Neighbours, eps, minPts)
19: for : = 0 — Neighbours.length do

20: P + Neighboursli]

21: if P is not visited then

22: P is visited

23: Neighbors' < REGION(P, eps)

24: if size(Neighbours') > minPts then
25: Label P as core

26: else

27: Label P as edge

28: end if

29: Neighbors < Neighbors + Neighbors'
30: end if

31 end for

32: end function

33: function REGION(P, eps)

34: return all points within P’s eps-neighborhood
35: end function

36: function ADD_TEMPLATE(templates, context)
37: Add context into templates

38: end function

The training algorithm is explained in Algorithm 1. The

function Train is the main function of training algorithm,
where D represents the initial training data. eps and minPts are
global parameters of the Arena model. The function Region
returns all points within the Eucidean distance of eps. If the
size of neighbours is less than minPts, then label point P as
outliers, otherwise label point P as a core point. The training
algorithm calls the function Expand when the point P is a
core point. The function Expand can find more core and edge
points through traversing all neighbors of point P. The function
Add_template is to extract anomaly templates in the prediction
strategy which is introduced in next subsection. The worst case
time complexity of the training algorithm is o(n?), where the
space complexity is o(n).

C. Anomaly Prediction Strategy

In the training process of the anomaly prediction model,
the abnormal points in the monitoring data can be identified.
Also, to detect the outliers of the monitoring data, we expect
the Arena model to have the ability to predict anomalies before
they occur. To solve this problem, we developed two prediction
strategies to enhance the accuracy of the Arena model.

First, according to the Arena training algorithm, the moni-
toring points are divided into three categories: the core point,
edge points and outlier points. The core points and edge points
are retained. We detect the status of new monitoring points
using the existing core points and edge points information.
Calculate the distance of the new monitoring point from the
existing points. If there is a core or edge point within eps,
the point is normal. If it does not exist, mark the point as an
outlier. If the number of existing points within eps is more
than minPts, then the new point is a core point, otherwise it
is an edge point.

The first prediction strategy used in the Arena model is to
judge whether there are n edge points in succession. Although
the edge point is normal, the system can be considered in the
borders of the normal state. So we use the continuous edge
points as the standard to predict the anomalies. The Arena
model can determine the status of a new monitoring point. If
there are n consecutive edge points, then raise an alert. A user
can adjust the prediction strategy by tuning the value of n.

The second prediction strategy of the Arena model is to
use the abnormal points during the training process to extract
anomaly templates. As shown in Algorithm 1, we will call
the function Add_template when the point P is an outlier.
The context is the fixed-length monitoring metrics before the
current time. We use the context before outlier as our anomaly
template. When the Arena model predicts the new monitoring
data, it calculates the similarity between the context of a new
monitoring point with historical templates to predict anomaly.

If we assume the length of context is 3 and current point
is p; at time t, the current context is p;_1, pr_2 and p;_3.
The template (tmi—_1, tms—o and tm;_3) is in the model’s
historical templates. If it meets the following conditions, we
will raise an anomaly warning. dis represents the distance of
DPt—i and tmye_;.



dis(pi—i, tmy—;) < eps(i =1,2,3) 5)

As presented in Algorithm 2, we first call the function
a Predict_based_stragety to predict anomaly. If it returns a
normal label, then we analyze its neighbors. The Arena model
can not only detect the outliers, it can use these two prediction
methods to complete the abnormal prediction.

D. Real-time Update and Pruning Strategy

In this section, we introduce the core of the proposal, the
real-time update and pruning strategy in the Arena system.

Real-time updates are critical to the Arena system because
monitoring data changes over time. The real-time update can
improve the prediction accuracy of the Arena model. The key
of the Arena system is that the core points and edge points are
in the model, and the new monitoring points can be classified
by using the core points and edge points. We can update the
core points and edge points with time to make the Arena model
real-time.

The pseudo-code of update algorithm is presented in Algo-
rithm 2. If the new point is normal, we will call the function
Update to add the new point into our model. We add the new
point into edge points when the size of neighour is less than
minPts, otherwise they are added into core points.

Real-time update strategy brings an issue that the number
of core points and edge points will increase with time and the
scale of the model will become larger. If all normal points are
retained as the core points or edge points, it will inevitably
lead to redundancy problems. The Arena system adopts a
reasonable pruning strategy to reduce the additional points and
improve the efficiency of the model.

The ideal criterion for verifying a point as a redundant
point is that it will not affect all predictions after the point is
removed. The Arena model prunes redundant points because
the density of the normal points can be much higher than
needed. Fewer points can improve the computation efficiency
of the model. For example, if there are a sufficient number of
core points and edge points around a new point, and adding
the point will not affect the result, then the point is a redundant
point.

According to the standard for determine the redundancy
point, it is necessary to traverse all the cases within the eps
distance, which induces enormous cost. Therefore, we adopted
a heuristic algorithm to determine whether a new point shall
join the core points or edge points by calculating the number
of surrounding points within the range of eps. Let R be the
redundancy, and the redundancy can be calculated as follows.

R_ size(Neighbours) ©)

minPts

Where minPts is the parameter of the Arena model and
neighbours is the number of core points and edge points within
eps. If the redundancy R reaches a certain threshold, it is
judged as a redundancy point.

Algorithm 2 Model Prediction and Real-time Update
Require: Model, New Point
Ensure: Label

1: function PREDICTANDUPDATE(M odel, N ew Point)

2: templates < Model.templates

3: r < PREDICT_BASED_STRATEGY (P, eps, templates)
4: if 7 = Anomaly then

5: return Anomaly

6: end if

7: Neighbors < REGION(NewPoint, Model.eps)
8: if size(Neighbours) =0 then

9: return Anomaly

10: else

11: UPDATE(M odel, neighbor_size, minPts, P)
12: return Normal

13: end if
14: end function
15: function UPDATE(M odel, neighbor_size, minPts, P)

16: if neighborgize < minPts then
17: Add P into Model.Edges

18: else

19: Add P into Model.Cores

20: end if

21: end function
22: function PREDICT_BASED_STRATEGY(P, eps, templates)

23: if P is n-th consecutive edge point then
24: return Anomaly

25: end if

26: if context of P in templates then

27: return Anomaly

28: end if

29: return Normal

30: end function

31: function REGION(P, eps)

32: return all points within P’s eps-neighborhood
33: end function

III. EXPERIMENTAL EVALUATION

We evaluate the ability of Arena to predict anomaly on
different datasets. We describe experimental setup and report
empirical results in this section.

A. Experimental Setup

We evaluate our prediction method based on two real system
data set: Yahoo Webscope anomaly detection dataset [6] and
an anomaly data set from a component based system of
enterprise T.

The Yahoo Webscope anomaly detection benchmark con-
sists of labelled time-series representing metrics of various
Yahoo services. Each time-series is replayed sequentially
to emulate real life scenario. We tested our system with
time-series from the AlBenchmark of the Yahoo Webscope
anomaly detection dataset. AlBenchmark is based on the
real production traffic to some of the Yahoo properties. The
anomalies in AlBenchmark are marked by humans, and other



benchmarks in the Yahoo Webscope anomaly detection dataset
are based on synthetic time-series. Therefore, we use the
AlBenchmark to measure the accuracy of anomaly prediction.

The component-based system dataset is from the moni-
toring system of enterprise T. Enterprise T is one of the
largest Internet service providers which provides mass media,
entertainment, Internet mobile phone value-added services,
and many other services. In the enterprise T’s computer
system, there are thousands of components including business
components and functional components. These components
are deployed on dozens of nodes distributed all over the world.
The performance status of all server nodes are logged and
stored in the monitoring system for days. The faults in the
dataset came from the real online environment are labelled by
the anomaly detector and are verified manually.

The statistics of our anomaly prediction dataset are given in
Table I. The Yahoo Webscope anomaly detection benchmark
contains 19,222 monitoring points, including 240 anomaly
points. Enterprise T anomaly prediction dataset contains
24,236 monitoring points, including 301 anomaly points.
There are multiple monitoring dimensions in the Yahoo bench-
mark and the enterprise T dataset.

In our experiments, we set the width of windows sampling
and the number of continuous edges as 3, and redundancy of
pruning as 10.

TABLE I
STATISTICS OF THE ANOMALY PREDICTION DATASET

Dataset Total Anomaly  Dimension
Yahoo Lab 19,222 240 14
Enterprise T 24,236 301 12

B. Evaluation Method and Baseline

We use the precision, recall, F value, false positive rate (fpr)
and lead time to evaluate the anomaly prediction accuracy and
performance. We define the abnormal state to be the positive
class and the normal state to be the negative class. We compute
the standard metrics using the formula in Equation set 7.

TP

TP+ FP
TP
TP+ FN
_ i 2T P )
 2TP+FP+FN
_FP
~ FP+TN

Where T'P is the number of true positives which represents
the number of times a model raises the alarm due to there
is an anomaly. T'N is the number of true negatives; F'P is
the number of false positives; F'N is the number of false
negatives. If the accuracy, recall and F value are higher then
the performance of the model is better. The lower false positive
rate represents a better result. We define the lead time to be
the time duration between an alert being raised and the actual

precision =

recal =

fpr

failure time. It means that if the lead time is sufficient, the
anomaly management system can take an action to prevent
anomalies.

To demonstrate the effectiveness of our proposed method,
we compare our method with some baseline methods in this
section. The baseline methods we chose include a set of
commonly used anomaly prediction methods. They can be
described as follows:

1) One-class support vector machines (OCSVM): It is used
for novelty detection. Given a set of samples, it will detect
the soft boundary of that set so as to classify new points as
belonging to that set or not [7].

2) Behaviour-based Anomaly Detection (BAD): This tech-
nique exploits the knowledge of the characteristic probability
density function of normal performance measurements. BAD
estimates a model of the unknown PDF of a given baseline
using Kernel Density Estimation[8].

3) Isolation Forest (IForest): One efficient way of per-
forming outlier detection in high-dimensional datasets is to
use random forests[9]. It isolates observations by randomly
selecting a feature and then randomly choosing a split value
between the maximum and minimum values of the selected
feature.

For these baselines and our method, we use 10% monitoring
data for training and parameter optimization; other monitoring
data as incoming data are used to evaluate our system. All
methods use the same feature extraction introduced in part
A-standardization and feature extraction. We conduct our
experiments on each dimension, then compute their average
as our experiment results.

C. Experimental Results

This section demonstrates the experimental results from
three aspects: prediction accuracy, prediction strategy and
pruning results.

1) Prediction Accuracy: We use the precision, recall, F
value and false positive rate (fpr) to evaluate the anomaly
prediction accuracy.

TABLE I
ANOMALY PREDICTION ACCURACY COMPARISON FOR YAHOO

- Precision ~ Recall  F value fpr
BAD 82.31% 74.32% 0.781 4.3%
OCSVM 84.19%  79.27% 0.817 3.7%
IForest 81.43%  85.41% 0.834 3.3%
Arena 88.30% 82.79% 0.855 2.7%

As shown in Table II, the Arena system achieves higher
prediction precision, F value and fpr than other methods for
the Yahoo dataset. The BAD model has the worst performance
of all models. The main reason for this is that, it predicts the
anomalies only based on the kernel density estimation, which
can’t capture changes in monitoring data. At the same time, if
the anomaly points have significant density, BAD will classify
them as normal points.



TABLE III
ANOMALY PREDICTION ACCURACY COMPARISON FOR ENTERPRISE T

- Precision ~ Recall ~ F value fpr
BAD 80.21%  73.35%  0.7663  4.5%
OCSVM  82.63%  76.22% 0.793 3.9%
IForest 86.17%  79.21% 0.825 3.6%
Arena 85.36% 82.18% 0.837 3.1%
TABLE IV

LEAD TIME RESULT FOR YAHOO AND ENTERPRISE T DATASET

- BAD OCSVM IForest Arena
Yahoo 342 3.53 4.31 4.52
Enterprise T~ 29.23 34.12 33.12 36.32

We can also see that OCSVM achieves 84% accuracy which
is second to the Arena model. The reason for the high accuracy
is that One-class SVM needs to use normal data to train,
which helps the model to obtain more normal monitoring data.
Therefore, One-class SVM has a higher precision rate but a
lower recall rate. SVM does not update and adjust the model
itself. If the monitoring data have changed, the accuracy of
the model will decline.

The recall rate of the isolation forest model is the best
among the four models. Also its F value and the false positive
rate are only second to the Arena model. This is because the
isolated forest in the training time uses random sampling to
classify the monitoring data into a number of leaf nodes, then
detects the anomaly points based on their density. Therefore,
in the process of random sampling, some normal monitoring
points may be randomly classified into incorrect leaf nodes,
which leads to the high recall rate, but not the accruracy rate.

The Arena model automatically classifies the anomaly
points based on the density information. Furthermore, the
Arena model can improve the accuracy of the model by using
the real-time update.

Table III shows the prediction accuracy result for the
Enterprise T systems using different prediction models. The
Arena models also achieves a higher F value and fpr than other
methods. The BAD is still the worst model of all methods. The
experimental results of Enterprise T monitoring set show that
the Arena model consistently demonstrates high performance
compared to other models on different data sets.

Figure 3 shows the prediction precision and recall rates
of the Arena system in different dimensions for the Yahoo
dataset. Figure 4 demonstrates the results for the Enterprise T
dataset. As shown in Figure 3 and Figure 4, the Arena system
has poor performance only in few dimensions. This model is
robust and it is suitable for various types of dimensions for
the monitoring data.

We now present the lead time results of our experiments
shown in Table IV. Yahoo Enterprise sampling interval is 1
second and T’s sampling interval is 10 seconds. In both Yahoo
and Enterprise T datasets, we observe that the Arena model
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Fig. 4. Yahoo evaluation results of model component ablations

can achieve better performance than other models.

2) Prediction Strategy: We propose two strategies to predict
anomalies in the Arena system. One strategy is to judge
whether there are n edge points. The other strategy is to
record the templates. We conducted some ablation experiments
and present model analysis to help us understand prediction
strategies of Arena. These strategies are described as follows:

« Nedge. This method only uses the first prediction strategy
to raise anomaly if there are n edge points in succession.
We set n as 3, 5, 7.

« Template. The model only uses the second strategy. It
learns the templates during training and raises anomaly
based on templates. We set different width of context as
3,5, 7.

As shown in Figure 4 and Figure 5, we compute the F
value for our full model and different variants on the Yahoo
and the Enterprise T dataset. The N-edge strategy works best
when n is 3. The results demonstrate that anomaly prediction
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TABLE V
F VALUE FOR REAL-TIME UPDATE
Yahoo T
No Update 0.816  0.812
Real-time Update  0.855  0.837
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Fig. 6. Trend of the number of core points and edge points change

dose not require too many edge points. For template strategy,
when the width of context is 3, the model achieves the best
performance in both data sets. It brings low recall if the width
of context is too large. The ablation model Nedge-3 performs
worse than Template-3. This indicates that using templates is
more efficient than simply rules. There are some templates in
the anomaly prediction.

3) Update and Pruning results: We propose the real-time
update to improve the prediction accuracy. As shown in Table
V, we compute the F value to show the influence of real-
time. The experiment results demonstrate that the real-time
feature is essential for the Arena system. It gains improved
anomaly prediction capability by updating its core points and
edge points in real time.

However, the real-time update strategy also encounters a
scalability issue since the number of core points and edge
points increase with time and the size of the model will
increase. Therefore, it becomes necessary to prune extra points
by looking for redundancy. To guarantee precision, we set the
redundancy to be 10, which is the a conservative configuration.

As shown in Figure 6, we change the numer of monitoring
points from 750 to 7500 and observe the total used points with
and without pruning. We can see from the figure that for the
non-pruning model, the number of core points and edge points
is linear proportional to the total data size. Using the pruning

TABLE VI
THE EFFECT OF PRUNING ON PREDICTION TIME AND F VALUE

Yahoo T
No Pruning  5.733s/0.855  5.421s/0.837
Pruning 5.3525/0.849  5.135s/0.829

TABLE VII
F VALUE FOR RUBIS UNDER DIFFERENT CONTEXT WINDOW

Context Window Length 3 5 10 15
Yahoo 0.855 0.835 0.801 0.790
T 0.837 0.815 0.804 0.762

model can significantly decrease the number of data points in
the model.

Pruning strategy reduces the number of core points and edge
points, thus reducing the memory requirement of the model.
At the same time, the reduction of core and edge points can
also reduce the computational complexity and improve the
prediction speed of the model in anomaly prediction.

We evaluated the overhead of our anomaly prediction model
in both datasets. These results are the average prediction time
based on over 15,000 experimental runs. In this paper, these
experiments were conducted on a 3.4GHz Intel Core i7 PC
machine with 8-gigabyte main memory. As shown in Table
VI, we can find that the prediction time and F value is reduced
when using pruning.

One observation is that the prediction time reduces 5% to
10%, which is much lower than the reduction of core and
edge points. There are two main reasons: first, in addition to
calculating the distance of the core points and the prediction
points, there are the process of model initialization and data
preprocessing, etc. These processes will not be reduced be-
cause of the decrease in the number of core points; second,
the pruning process brings extra computation workload. Due
to these two reasons, the reducation of prediction time is lower
than the reduction of points.

We compare the effect of the pruning model and the non-
pruning model on the prediction performance of Yahoo and
Enterprise T data. The results are shown in Table VI. As
mentioned above, to guarantee precision, we set the redun-
dancy parameter as 10. The experimental results show that
the pruning model has little effect on the prediction of the
anomaly.

4) The Impact of Window Length: We have conducted
experiments to study how the Arena models perform under
different window length with various settings. We show results
of the Arena model for the Yahoo dataset and the Enterprise
T dataset under a different duration of the window.

Table VII shows the F values for both datasets under
different lengths of the window. The Arena model achieves
the highest score when the length of the window is 3 for both
data sets. The long windows may bring more noise, which
affects the anomaly prediction.



Overall, the Arena model demonstrate the best prediction
accuracy on both the Yahoo dataset and the Enterprise T
dataset. The pruning strategy can reduce the number of cores
points and edge points efficiently.

IV. RELATED WORK

In this section, we review the related works about anomaly
prediction approaches, mainly focusing on unsupervised
anomaly prediction methods.

A. Anomaly Prediction Methods

The problem of anomaly detection has been extensively
studied during the last decade. Anomaly detection is a passive
method that reports problematic states after they happen.
Anomaly prediction is a proactive method which raises alerts
when the system is still in the normal state but progressing to
an anomaly state [10].

L. Cherkasova et al. proposed an integrated framework for
detecting the changes and differentiation performance of ap-
plication behaviours [11]. They employed a regression model
to achieve statistically significant transaction types, then de-
tected performance changes by comparing the new application
signatures against the old ones. Y. Tan et al. used the Markov
model for predicting the future state of the system [12]. They
adopted the Tree-Augmented Naive Bayesian (TAN) network
to be their anomaly classifier, where the dependencies among
different metrics are considered. There is an issue when using
the Markov model as the regression model, where feature
values are converted to discrete states to run the model. To
address this issue, many solutions have been proposed to
improve the Markov model. For example, X. Zhou et al.
suggested a Belief Markov Chain based on the Dempster-
Shafer theory [13]. In their work, a stream-based k-means
clustering method was used to improve the Evidential Markov
chain, in which each cluster represents a Markov state and the
arriving data points can be mapped into k states.

B. Unsupervised Anomaly Prediction Methods

In recent years, there have been many unsupervised tech-
niques employed in anomaly detection or prediction. With
a large volume of monitoring data, it is difficult to obtain
labelled training data. Unsupervised anomaly prediction meth-
ods can predict anomalies without labelled training data.

D. J. Dean et al. proposed an Unsupervised Behavior
Learning (UBL) system for IaaS cloud computing infrastruc-
tures [14]. UBL leverages Self-Organizing Maps to capture
emergent system behaviours and predict unknown anomalies.
The SOM uses three kinds of neurones(normal, pre-failure and
failure) to predict anomalies. The UBL system cannot update
its model and needs to set a neighborhood area size threshold
by system users to differentiate normal and anomalous neurons
which is integral to the accuracy of the UBL system.

Pedro introduced an unsupervised network anomaly detec-
tion algorithm for knowledge-independent detection of anoma-
lous traffic [4]. The system used a clustering technique based

on sub-space-density clustering to identify clusters and outliers
in multiple low-dimensional spaces.

In [15], the author presented a predictive performance
anomaly prevention system that provides automatic perfor-
mance anomaly prevention for virtualized cloud computing
infrastructures which integrate online anomaly prediction,
learning-based cause inference, and predictive prevention ac-
tuation to minimise the performance anomaly penalty without
human intervention.

V. CONCLUSION AND FUTURE REMARKS

In this paper, we propose an adaptive real-time unsuper-
vised anomaly prediction system (Arena), which can predict
anomalies in monitoring data. We implement two prediction
strategies to enhance the ability to predict anomaly in the
Arena system. Our experimental results show that the predic-
tion strategies can improve prediction accuracy. The pruning
strategy is adopted to reduce redundancy. Experimental results
prove that this pruning method can decrease the number of
core points and edge points, and also improve the prediction
speed.

In our future work, we plan further experimental evaluation
of our prediction model in more cloud network environment
or data centres. Additional work is to integrate our anomaly
prediction system with an analysis engine that can diagnosis
the cause of an alert.
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