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Abstract—The goal of energy cost-aware routing and
wavelength assignment (RWA) is to minimize the total elec-
tricity expenditure in an optical network. While effective,
simply aiming to reduce the electricity consumed does
not necessarily mitigate the environmental impact. A new
approach is required to simultaneously reduce both the
electricity cost and emissions produced as a by-product
of RWA. We present a method for doing so through the
use of mixed-integer linear programming (MILP), which
can find the optimal solution that minimizes the electricity
cost of RWA for a static set of requests while keeping emis-
sions under a specified cap. This objective is quantitatively
compared to alternative goals, including directly minimiz-
ing the emissions produced, reducing the length of estab-
lished paths, and balancing reductions in both emissions
and electricity cost simultaneously. As MILP computation
is costly and the results are required in near real time to
react to changing prices, we present a solution that em-
ploys a well-known supervised machine learning algo-
rithm, logistic regression, that predicts the cost saving
paths in real time. Using a dataset of 808,024 records
(70% for training and 30% for testing) output from the
MILP, we find that this logistic regression model predicts
the most cost-efficient path with 92.5% accuracy.

Index Terms—Green networking; Real-time pricing;
Routing and wavelength assignment; Unicast.

I. INTRODUCTION

C ore networks consume about 20 TWh of energy annu-
ally. They are responsible for the release of 11 mega-

tons of carbon dioxide emissions and $1.2B of electricity
expenditures [1]. With the growth in cloud computing,
Internet of Things, and other bandwidth-hungry applica-
tions (e.g., 4KTV), the scale of emissions produced and
dollars spent has been increasing dramatically. The in-
crease in energy consumption has sparked interest in
attempts to improve energy efficiency. Traditionally, it has
been assumed that improving efficiency is sufficient for

minimizing total overall energy consumption. However,
studies have shown that higher efficiency can actually
lead to higher consumption [2]. Therefore, to truly reduce
consumption, core network operators must focus on efforts
to directly decrease the amount of energy spent through
changing how demands are routed through the network.

Today’s core communication networks span cross-
country or cross-continental regions. Consequently, the
network operators distribute their infrastructure across
different geographical locations worldwide to improve their
reliability and quality of service. Such large and often di-
verse areas might be served by multiple competing power
markets throughout, as shown with the NSFnet topology
depicted in Fig. 1. The electricity price and fuel mix differ
from site to site at any given time and over time at any
given site. Over time, the cost can increase or decrease by
up to a factor of 11 [3]. Thus, shifting a partial amount of
electricity consumption from a given location to other alter-
native locations leads to a significant potential for reducing
the electricity cost and/or emissions of any consumer.

In recent years, power markets have started pro-
viding information about their real-time electricity prices
and fuel diversity through websites or mobile apps. These
services could allow savvy consumers to adjust their
consumption in order to reduce their electricity bill or
address environmental concerns. Information communica-
tion technologies (ICTs) could be such a consumer, shifting
consumption in either time or space by changing the
policies used to route data through the network.

Through energy-aware routing, it is possible to mitigate
the electricity cost and emissions produced in core net-
works, but reducing both simultaneously can be difficult.
For example, some types of conventional power plants (par-
ticularly coal power plants) are cheap sources of electricity,
but they are also the world’s top contributing sources of
carbon dioxide emissions and the primary cause of global
warming. Thus, reduction of electricity cost and reduction
of carbon dioxide emissions may be distinct goals in
opposition to one another. Previous works have typically
focused on one goal, such as selecting the lowest electricity
cost path between a source and destination in a network
[4]. In this work, we seek to address both economic and
environmental ICT concerns simultaneously through novel
specialized energy-cost- and energy-source-aware routinghttps://doi.org/10.1364/JOCN.10.000D72
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paradigms as an interdisciplinary project between power
grids and ICTs. Considering the electricity cost and emis-
sions of power markets in a combined manner may yield
superior economic green networking in optical networks
to address both economic and environmental concerns
about core networks as a joint concern.

Our approach comes in the form of a mixed-integer lin-
ear program (MILP) that adaptively assigns lightpath (a
physical path and wavelength) solutions to the static rout-
ing and wavelength assignment (RWA) problem in optical
core networks to optimally reduce either the electricity
cost, emissions produced, or both. We examine minimizing
the electricity cost and compare this objective to several
different goals such as minimizing only the emissions,
minimizing the lengths of provisioned routes, and finding
a balanced emissions and dollar cost approach through a
weighted cost function.

While the MILP can produce optimal solutions for a
given objective, it does not scale well as the size of the net-
work increases, as RWA is a NP-complete problem [5]. This
can lead to high computation times, which can have nega-
tive repercussions, as prices and power sources fluctuate
over time. To deal with this issue, we propose another dy-
namic routing algorithm, which enhances the network per-
formance by employing the output of MILP as input for a
machine learning solution. We study logistic regression for
this purpose, and we compare its performance in terms of
electricity cost and emissions accuracy.

In this paper, we build upon our previous work [6] by not
only minimizing the electricity cost of RWA for a static set
of requests, but also keeping emissions under a specified
cap. This objective is quantitatively compared to additional
alternative goals, including directly minimizing the emis-
sions produced, reducing the length of established paths,
and balancing reductions in both emissions and electricity
cost simultaneously. The rest of this paper is organized as
follows: we provide background information about electricity
costs and emissions in powermarkets in Section III, describe
our optical network nodal energy model in Section IV, define
key equations in energy-aware routing in Section V, explain
the MILP formulations in Section VI, investigate machine
learning in Section VII and compare their performance in
Section VIII, and conclude the paper in Section IX.

II. RELATED WORK

A detailed survey of energy studies in the core networks
has been presented bymultiple works, including [7–9]. This
subject has been considered from multiple perspectives,
ranging from techniques for reducing the electricity cost
of routing to cutting down on emissions. Given that ICT en-
ergy consumption is growing at ten times the average rate
of all other sectors of electricity consumers [10,11], this is a
critical area of study.

Electricity cost-aware routing was first introduced in
Qureshi et al.’s paper in 2009 [12]. They distributed
Internet traffic among different data centers based on their
charged electricity prices. They ignored proportional power
consumption in core networks used to transport that traffic
and ignored the cost of using hubs located in regions with-
out electricity markets. The authors of Ref. [13] similarly
aimed to minimize electricity cost in multiple markets
for Internet data-centers (IDCs). The same authors mod-
eled the problem through mixed-integer programming
based on a generalized benders decomposition (GBD) in
Ref. [14]. In Refs. [15,16], joint optimization approaches
were used that reduced both electricity and bandwidth cost
in data-center networks. Cost savings was combined with
fault tolerance in the design of data-center networks in
Ref. [17]. Electricity cost minimization algorithms with
job security guarantees for data-center networks in energy
markets are presented in Ref. [18].

Power systems researchers have also investigated re-
lated topics. A mixed-integer programming model for par-
ticipating data centers in demand-response programs was
proposed by Ref. [19]. They evaluated their models using
traffic data from the World Cup 1998 and found that more
than 20% of electricity costs can be cut by taking the loca-
tional marginal electricity prices into account during the
peak workload period. In Ref. [20], they simulated data
centers interacting with the power grid with a flexible de-
mand-response load. They proposed a pricing prediction
model and examined the performance of power systems
and flexible data centers during unstable traffic periods.
A game-theoretic framework between a data center and
its users was proposed by Ref. [21]. In this game, users
can trade their performance for monetary rewards and
shift their requests to different time periods. Electricity
price contracts used by data centers in practice were
reviewed in [22], and they found that data migration
over WDM may reduce energy costs in data centers by
up to 28%. The authors in Ref. [23] studied modular
co-simulation of power systems and ICT to investigate
how the performance of one impacts the cost of the other.

In Ref. [24], the goal was to minimize the total energy
consumption in IP-over-WDM networks while minimizing
its effects on the underlying core network’s performance. In
this work, they treated IP routers at the major sources of
energy consumption. Similarly, in Ref. [25], mixed-integer
linear programming (MILP) was used to cut electricity
prices in an IP/WDM inter-data-center network with
time-of-use pricing. The authors of Ref. [26] compared four
optical core network architectures: (1) basic IP over WDM

Fig. 1. 14-node NSFnet topology, with regional power markets
highlighted.
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with no optical switching, (2) with transparent switching,
(3) with translucent switching, and (4) IP over a synchro-
nous digital hierarchy. They found savings of up to 60% in
terms of energy costs by employing integer linear program-
ming for energy minimization.

Beyond just considering the dollar cost of ICT, research-
ers have also examined the environmental impact. In
Ref. [8], the green-energy-aware works are classified into
four categories: green-energy-aware workload scheduling,
green-energy-aware virtual machines (VM), green-energy-
aware energy planning, and interdisciplinary. In Ref. [27],
theauthors suggest anewplanning scheme to co-locatedata
centers and grid resources close to sites with a high avail-
ability of renewable resources. The trade-off between the
rise in transport emissions and reduction of data-center
emissions through this strategy has been investigated in
Ref. [28]. Green-power-source-aware routing with general-
ized multiprotocol label switching is discussed in Ref. [29].
Renewable cloud services have been proposed to relocate
traffic to cloud data centers with available renewable
resources at the location [30]. In Ref. [31], the authors fo-
cused on reducing emissions by shifting energy consump-
tion from non-renewable sources to solar energy. The
authors of Ref. [32] present one of the first approaches that
makesuse of dual power sources for routing andwavelength
assignment, and the authors of Ref. [33] investigate a
heterogeneous, partially green network and its interaction
withmanycast routing. In Ref. [34], the GreenTouch consor-
tium found that up to 98% reduction in the net energy
consumption for the end-to-end communication networks
can be achieved by 2020, through the use of a number of
techniques. These include the installation of network
components with lower power consumption, intelligent
management of protection resources, using sleep mode
and mixed line rates (MLR), optimization of the network
physical topology, and using optimized content distribution
throughout cloud networks [35]. When looking to mitigate
the environmental impact at the core network scale, the
proposed techniques reduce energy consumption to 1/39th
its previous value for routers and to 1/6th for transponders.

Similarly, in Ref. [36], they performed green load balanc-
ing by routing the workload of cloud services to locations
with a lower portion of “brown” fossil fuel energy. They
found that emissions savings is inherently tied to the abil-
ity of a system to flexibly switch to lower-emissions power
sources. The same authors studied the possibility of run-
ning a large-scale ICT systems using only renewable re-
sources in Ref. [37]. The authors of Ref. [38] proposed a
green routing algorithm, which worked by minimizing en-
ergy consumption in the core network, with the motivation
that reducing energy consumption would have some effect
on the amount of emissions produced.

As noted above, a number of emissions-reduction strat-
egies for core networks have been proposed, but the concept
of finding a balance between emissions and electricity
cost in core networks has not yet been studied. To the best
of our knowledge, there is no comprehensive analytical
model that captures power consumption, emissions, and
electricity cost for wide-area core networks. In this paper,

we study the impact of adaptive routing based on emis-
sions, electricity prices, and a combination of emissions
and electricity cost.

III. POWER MARKET MODEL

Power markets were created to foster competition in
power generation and supply zones in terms of electricity
price, reliability, quality, and even fuel diversity. They have
administrators, like independent system operators (ISOs)
and regional transmission organizations (RTOs), to make
the market reliable, clear, and balanced. Due to lack of
cost-effective technologies for storing electricity, the power
markets are balanced by the principle of unit commitment,
which ensures that the generated electricity must be equal
to demand. This leads to fluctuation in electricity prices.
There are seven main electricity markets in the United
States (refer to Fig. 1), namely, New England ISO (NEISO),
California ISO (CAISO), Electric Reliability Council of
Texas (ERCOT), Southwest Power Pool (SPP), Pennsylvania-
Jersey-Maryland Interconnection (PJM), New York ISO
(NYISO), and Midcontinent ISO (MISO). Figure 2 shows
how the hourly electricity price changes at three different
ISOs throughout a day [39].

Electricity is generated in power plants by using various
origin resources; e.g., the United States fleet had a fuel
diversity of coal (39%), natural gas (27%), nuclear (19%),
hydro (6%), and other renewable resources (6%) in 2014
[40]. The process of generating electricity from each
origin resource produces emissions at different rates,
for instance: coal (800 to 1050 gCO2e∕kWh), natural gas
(430 gCO2e∕kWh), nuclear (6 gCO2e∕kWh), hydro
(4 gCO2e∕kWh), wind power (3 to 22 gCO2e∕kWh), and
photovoltaic solar (60 to 150 gCO2e∕kWh) [41,42]. The
gCO2e is used as the emissions unit, and the “e” means
all values include the impact of all kinds of emissions.
Due to the lack of technologies for large-scale energy stor-
age, there is no effective way to store large amounts of clean
energy for later high-demand hours. Thus, fuel diversity
across power markets and over time changes according
to the cost and availability of origin resources. Based on
fuel diversity and variety in the polluted air per kilowatt
hour (kWh), we represent the total produced emissions
in units of gCO2e when consuming 1 kWh of electricity
as the emissions factor. The emissions factor can fall be-
tween two extremes, ranging from 100% of the energy pro-
duced from a green fuel source to 100% produced by an
environmentally damaging source. As wementioned above,
wind power plants can emit 3 gCO2e per kWh (under ideal
wind conditions), and are assumed to match the lowest
emissions factor in this paper, while coal power plants
match the highest rate at 1050 gCO2e∕kWh. Figure 3
shows emissions factors given at two ISOs.

IV. POWER CONSUMPTION MODEL

There are different models for network equipment power
consumption in the literature. We use amodel that is based
on real equipment measurements and accounts for power
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consumption both while a node is on but idling and while
the node is used for transmission. In Fig. 4 we illustrate the
multilayer (optical, electronic, and IP layer) node model
used to calculate the network power consumption. We
use values from [43], where a comprehensive analysis of
equipment from different manufacturers resulted in the
quantities listed in Tables I and II. The node consists of
an electrical routing layer at the top, an optical transport
and multiplexing layer at the bottom, and a connecting op-
tical electronic optical (OEO) layer in between. We use
wavelength division multiplexing (WDM) as the transport
network technology, as it is widely employed in high-speed
wide area networks,

pIP � πIP�AIN � AOUT � c�LD � LA��, (1)

pOEO � πTX�c��LD � LA�, (2)

pWDM � πOXC�LD � LA� � α�LIN � LOUT� � β, (3)

Pj � pIP � pOEO � pWDM: (4)

At the source, data are processed from the top, the access
network, down to the outgoing link (refer Fig. 4), while
data have to be processed in the reverse direction at desti-
nations. Equations (1)–(4) are used to calculate the nodal
power consumption alongwith the values in Tables I and II.

Equation (1) is the power consumption of the IP layer, and
Eq. (2) describes the OEO power consumption. LIN, LD, and
AOUT are assumed equal to zero at sources, whereasAIN,LA,
and LOUT are zero at destinations. As only source and desti-
nation nodes involve OEO conversion, Eqs. (1) and (2) are
not applied at any intermediate nodes along an all-optical
route. Equation (3) considers the consumed electricity in
optical communication, which is calculated at all involved
nodes. α is equal to 0.085 kW and represents the power
consumption of amplifiers built into the node. The β value

Fig. 3. Emissions factor for October 12, 2015 at two different ISOs.

Fig. 4. Multilayer node power model.

TABLE I
NETWORK-SPECIFIC VARIABLES

Symbol Description Value Unit

c Transponder transmission rate 10 Gbps
πTX�c� Transponder power consumption 0.05 kW
πOXC OXC power consumption 0.1 kW
πIP IP layer power consumption 0.01 kW/Gbps

TABLE II
NODE-SPECIFIC VARIABLES

Symbol Description Unit

AIN Input traffic from access network Gbps
AOUT Output traffic to access network Gbps
LD Lightpaths dropped from WDM to IP (O-E) Integer
LA Lightpaths added to WDM from IP (E-O) Integer
LIN Incoming lightpaths Integer
LOUT Outgoing lightpaths Integer

Fig. 2. Real-time hourly energy price for the week that started on May 23, 2011 at two different ISOs [39].

Deylamsalehi et al. VOL. 10, NO. 10/OCTOBER 2018/J. OPT. COMMUN. NETW. D75



is constant for directing the lightpaths to the appropriate
ports and equals 0.15 kW. The total power consumption
of a node is then calculated by summation of power con-
sumption at all layers using Eq. (4).

V. ENERGY-SOURCE-AWARE ROUTING EQUATIONS

We now discuss how the output from the nodal power
model can be utilized to calculate the energy consumption,
electricity cost, and emissions produced from establishing a
lightpath. A key element of this calculation is determining
the dollar or emissions cost for each node when a request’s
lightpath traverses it.

First, the energy consumption of a node when used for a
given request must be calculated. Following Section IV, let
serviceTimer be the duration of the data transfer for re-
quest r. Nodal energy consumption Er

j at node j is found
by multiplying the nodal power consumption at node j
by serviceTimer,

Er
j � Pr

j × serviceTimer: (5)

Therefore, given the electricity price at node j denoted
by EPj, the electricity dollar cost Cr

j of node j may be calcu-
lated as:

Cr
j � Er

j × EPj: (6)

As mentioned in Section III, the emissions factor γj at
node j represents the production emissions in the scale
of gCO2e if 1 kWh energy is consumed at node j. Thus,
the produced emissions Γr

j at node j for a given request
may be calculated as:

Γr
j � Er

j × γj: (7)

Using Γr
j or Cr

j as the weight for nodes, approaches in
Section VI are able to select a lightpath for each request
r so that the total emissions produced or dollars spent
are minimized.

VI. MIXED-INTEGER LINEAR PROGRAMS

In this section, we introduce a MILP model that finds
the optimal minimum dollar cost of provisioning a set of
requests, incorporating the models and equations from
Sections III–V. Following that, we propose several modifi-
cations for pursuing alternative objectives mirroring the
routing methods outlined in Section V, which are minimiz-
ing the emissions produced and the number of hops per
provisioned request, the physical distance traversed per re-
quest, and two additional objectives that balance emissions
and dollar costs.

A. Least Dollar Paths

1) Given:
V is the set of nodes in the network.
W is the set of wavelengths available on each link.

R is the set of unicast requests. For a given unicast
request r, we denote the source node of the re-
quest as sr, the destination node as dr, and the
amount of time the request needs to hold network
resources as serviceTimer.

ζi,j is binary, equal to 1 if a physical link exists
between i, j ∈ V .

LENi,j is a non-integer, equal to the length in kilometers
of link �i, j�.

EPj is a non-integer equal to the dollar cost of a unit of
energy at node j.

γj is a non-integer equal to the emissions factor of
energy spent at node j.

Pr
j is a non-integer equal to the power consumption

at node j when used for request r.
Er

j is the non-integer amount of power required to
use node j for request r.

Cr
j is the non-integer dollar cost of using node j for a

request r. This cost is determined using Eq. (6).
CMAX is the maximum value of Cr

j across all combina-
tions of r ∈ R, j ∈ V.

Γr
j is the non-integer emissions cost of using node for

request r. This cost is calculated using Eq. (7).
ΓMAX is the maximum value of Γr

j across all combina-
tions of r ∈ R, j ∈ V.

CAPe is the non-integer emissions cap, which is a
restriction on the amount of emissions produced
from provisioning request set R.

2) Variables:
Fr,w

i,j is binary, equal to 1 when link �i, j� carries the
lightpath for request r using wavelength w.

Lr,w is binary, equal to 1 when there is a lightpath for
request r using wavelength w.

Nr
j is binary, equal to 1 if the lightpath for request r

goes through node j.
DCr is a non-integer, equal to the amount of dollars to

establish the lightpath for request r.
ECr is a non-integer, equal to the amount of emissions

produced when establishing the lightpath for
request r.

HCr is an integer, equal to the number of hops in the
provisioned path for request r.

DISr is a non-integer, equal to the total length in
kilometers of the provisioned path for request r.

3) Constraints: Objective Function:

minimize:X
r∈R

DCr:(8)

The objective is to minimize the total dollar cost across
all requests in the network [Eq. (8)].

Subject to:

XR
r

Fr,w
i,j <� 1; ∀ w ∈ W, i, j ∈ V, (9)

Fr,w
i,j ≤ ζi,j · Lr,w; ∀ r ∈ R, w ∈ W, i, j ∈ V, (10)
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XV
i

Fr,w
i,j −

XV
k

Fr,w
j,k �

8>><
>>:

0, if j ≠ sr,dr

Lr,w, if j � dr

−Lr,w, if j � sr

∀ j ∈ V , w ∈ W, r ∈ R, (11)

XW
w

Lr,w � 1; ∀ r ∈ R: (12)

The constraints presented in Eqs. (9)–(12) are standard
constraints for the unicast RWA problem. The constraint in
Eq. (9) prevents a wavelength from being used more than
once on a link, the one in Eq. (10) limits lightpaths to being
established only on links that exist, and in Eq. (11) are the
conventional flow conservation constraints. Equation (12)
ensures that each request is provisioned a lightpath.

In the constraints presented inEqs. (13) and (14), the var-
iableNr

j is set equal to 1 if there is at least one flowgoing into
or departing from node j, and equal to 0 otherwise,

Nr
j <�

XW
w

XV
i

Fr,w
i,j �

XW
w

XV
k

Fr,w
j,k ; ∀ r ∈ R, j ∈ V , (13)

Nr
j · 2jWj >�

XW
w

XV
i

Fr,w
i,j �

XW
w

XV
k

Fr,w
j,k ; ∀ r ∈ R, j ∈ V:

(14)

Different cost variables are defined in the constraints
presented in Eqs. (15)–(18), each assigning a type of cost
to a request r. The constraint in Eq. (15) defines the dollar
cost, in Eq. (16) the emissions cost, in Eq. (17) the path
length in terms of hops, and in Eq. (18) the path length
in terms of kilometers,

DCr �
XV
j

Cr
j ·N

r
j ; ∀ r ∈ R, (15)

ECr �
XV
j

Γr
j ·N

r
j ; ∀ r ∈ R, (16)

HCr �
XW
w

XV
i

XV
j

Fr,w
i,j ; ∀ r ∈ R, (17)

DISr �
XW
w

XV
i

XV
j

Fr,w
i,j · LENi,j; ∀ r ∈ R: (18)

B. Least Emissions Paths

Rather than minimizing the total dollar cost [Eq. (8)], an
alternative objective in Eq. (19) is to minimize the total
emissions produced across all requests.

1) Constraints: Objective Function:

minimize:

XR
r

ECr: (19)

C. Shortest Hop Paths

If delay is a concern, the total number of hops per
request can be reduced by minimizing the sum across all
requests using Eq. (20).

1) Constraints: Objective Function:

minimize:

XR
r

HCr: (20)

D. Shortest Distance Paths

If the physical distance that an optical signalmust travel is
too great, signal regeneratorsmay be necessary. The objective
in Eq. (21) can be used to favor shorter distance paths.

1) Constraints: Objective Function:

minimize:

XR
r

DISr: (21)

E. Balanced Cost Paths

Rather than directly minimizing only the dollar cost or
emissions, we can use a balanced approach that reduces
both. As presented in Ref. [1], this approach uses a new
weight function that will minimize the combined emissions
and dollar cost based on weight value η ranging from 0.0 to
1.0. Note that the η is provided for a particular problem
instance, and all requests must use the same η value.

Two new parameters (η and WCr
j ), a new variable (BCr),

a new objective [Eq. (23)], and an additional constraint
[Eq. (24)] are needed tominimize this balancedweighted cost.

1) Given:
η is a non-integer weight value, falling within the

range [0.0, 1.0] in increments of 0.1, i.e., 0.0, 0.1,
0.2,…,0.9, 1.0.

WCr
j is non-integer, equal to the weighted combined

cost of emissions and dollars for using node j in
the lightpath for request r. It is calculated using
Eq. (22).

2) Parameter Equation:

WCr
j � η ·

Γr
j

ΓMAX
� �1 − η� · Cr

j

CMAX
; ∀ r ∈ R, j ∈ V: (22)

3) Variables:
BCr is a non-integer equal to the total weighted cost

of a lightpath for request r.

4) Constraints: Objective Function:

minimize:

XR
r

BCr: (23)
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Subject to:

BCr �
XV
j

XW
w

WCr
j ·N

r
j ; ∀ r ∈ R: (24)

F. Economic Green Paths

The weighted cost described in the Balanced Cost Paths
subsection uses the same weight value η for every request
in a request set. To improve the flexibility of the balanced
cost approach, we present the new method, economic green
paths (EGP), in this subsection. An entire set of weight val-
ues H � f0.0, 0.1, 0.2,…, 0.9, 1.0g are made available for
EGP, and we alter the definition of the WCr

j parameter
to use whichever weight value from H will minimize the
balanced cost for each individual request. This opens up
the potential for greater emissions or cost savings on a
case-by-case basis.

1) Given:
H is a set of non-integer weight values, with each

η ∈ H ranging from 0.0 to 1.0 in increments of 0.1.

The focus for this formulation is shifted to reducing the
total dollar cost [Eq. (25)], while keeping the total emis-
sions under a provided emissions cap [Eq. (26)].

Objective Function:

minimize:X
r∈R

DCr: (25)

Subject to:

XR
r

ECr <� CAPe: (26)

CAPe is chosen based on network operator policies. This
cap does open up the potential for creating infeasible sce-
narios, where it is possible that theMILPwill not be able to
produce a solution if the CAPe is set too low.

In this work, we defined the emissions cap based on the
percentage of emission reduction over LDP. By using the
equations in Ref. [1], the emissions cap may calculated by:

CAPe � ΓLDP − reductionRate · �ΓLDP − ΓLEP�, (27)

where CAPe is the emission cap determined by the reduc-
tion rate, along with ΓLDP and ΓLEP, which are the emis-
sions produced by LDP and LEP, respectively. This
implies that the lowest cap is equal to the emissions pro-
duced by using LEP routing, while the highest cap is equal
to the emissions from LDP routing.

VII. MACHINE LEARNING

MILP, while producing the optimal solution for a given
objective, is not scalable. As the size of the network or
the number of requests increases, the solving time grows

exponentially. As prices are known to fluctuate throughout
a day, operators would be interested in finding a solution
that can give them effective savings in terms or dollar cost
or emissions within a reasonable time frame. We present a
technique that employs a well-known supervised machine
learning algorithm, logistic regression, that predicts η in
real time after it has been provided a training set of optimal
MILP solutions. This can be used by a network operator to
choose a cost-efficient route, given a set of options and the
dollar/emissions costs for those routes, in a much shorter
amount of time than dynamically calculating the solution
using MILP.

In this section, we explain how we extract the key points
of the input for training a logistic regression model (feature
extraction on MILP), the implementation of the model, as
well as its output results and the accuracy of the predic-
tions of the model. The trained model can be used to com-
pute η in real time. We use a set of features, including a set
of dynamic network configurations, to train the model. Our
goal is to train the model with a varied set of network con-
figurations so that the model is able to make predictions
when presented with configurations it has not been previ-
ously trained on. Since the trained model relies on com-
puted statistical results, and it does not rely on network
configuration, it allows a network provider to predict η
in real time.

A. Binary Value for η

In terms of a single request, changing the η from zero to
one changes the weight factor of potential paths between a
source and a destination.When η � 0, the link weights only
include the emissions cost of transmission. When η � 1, the
weight considers only the dollar cost. As η increases from
zero to one, there is a tipping point ηi where the dollar cost
will have a heavier influence on the weight than the emis-
sions. In BCP, any provided η less than ηi will result in the
selection of the minimum emissions path, while any η
greater than ηi will force BCP to choose the minimum dol-
lar cost path. Note that any path between a source and a
destination has a potential electricity cost and emissions
value, which is completely independent of η, as it is based
on the nodal electricity price and emissions factor for each
node in the path.

In contrast to BCP where η is supplied as a parameter,
EGP picks the required η for any request while simultane-
ously considering the associated electricity cost and emis-
sions on that path. As discussed above, a number of η
values within certain ranges may lead to the same decision
on which path to take. In fact, based on our observations,
more than 99.7% of requests end up choosing an η value of
either zero or one. This indicates that the overall optimal
weighted cost can be found by choosing either the mini-
mum emissions path or the minimum dollar cost path,
rather than choosing a balanced path that falls between
those two extremes. Keeping this in mind, we simplify
the decision made by the logistic regression model covered
in the following subsection by limiting its choice in η to
either zero or one.
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B. Feature Extraction

The first step to generating a machine learning model is
feature extraction from a pre-computed η that allows a
model to be trained with different types of input. The goal
of this extraction is to allow the model to understand differ-
ent future inputs and predict the final value of η. This
avoids the need for η computation using MILP for new
requests, which would be costly.

While we extracted a number of features from the input,
the features covered in this section make up the most
well-defined model that provides a highly accurate predic-
tion rate.

We consider several binary dependent variables for
training a logistic regression to predict η value from the
MILP. The input data is made up of a set of requests that
can be optimized. This group of requests can end up taking
one of a number of paths by changing η. In this work, we
called this the “Flexible Request Set.” This set is made up
only of the requests that end up having a number of routing
choices based on their η value. This comes out to 20% of our
total set of requests, with the remaining 80% selecting the
same path for both LDPand LEPobjectives. MILP provides
the following information for training themachine learning
module for each request in the flexible request set:

CAPe We set the emission cap for a week’s worth of
requests in MILP. The emissions of traffic outside
of the flexible request set are subtracted from the
total emissions cap. This value is identical for all
requests during the week with same emissions
reduction rate.

s Source node.
d Destination node.
th Holding time.

ECLDP Total emissions produced by path selected by LDP.
ECLEP Total emissions produced by path selected by LEP.
ECLDP Total electricity cost for path selected by LDP.
ECLEP Total electricity cost for path selected by LEP.

η : Selected η by EGP MILP.

C. Logistic Regression Model

We used extracted features to train a logistic regression
model, which is a linear model for the classification prob-
lem of predicting a value η for a given pre-computed, s, d, th,
ECLDP, ECLEP, ECLDP, ECLEP. The model can be formu-
lated as follows. There are two types of regularization as
loss functions for logistic regression: i) L1-norm and
ii) L2-norm loss function. L1 regularized logistic regression
solves the following optimization problem:

min
w, c

kwk1wT � C
Xn
i�1

�log�exp�−yi�XT
i w� c�� � 1, (28)

min
w, c

1
2
wT � C

Xn
i�1

�log�exp�−yi�XT
i w� c�� � 1: (29)

Since we have a large dataset of computed variables, we
can use a solver with L2 penalization that also converges
faster for high dimensional data. The solver uses stochastic
average gradient descent [44], which is an objective func-
tion as follows:

Q�w� � 1
n

Xn
i�1

Qi�w�: (30)

The iteration model of Eq. (30) is defined as follows:

w ≔ w − η∇Q�w� � w − η
Xn
i�1

∇Qi�w�∕n: (31)

VIII. NUMERICAL EVALUATION

In this section, we compare LDP, LEP, BCP, SHP, SDP,
and EGP objectives in terms of emissions and electrical
expenditures. We evaluate MILP performance for these
objective using the 14-node NSFnet topology shown Fig. 1.
We follow this up by examining the accuracy of our logistic
regression model in predicting the η value given a training
set made up of MILP solutions.

A. MILP Evaluation

The MILP solutions considered use adaptive routing,
where a route is chosen based on the current network state,
which can provide opportunities for savings by choosing in-
termediate nodes based on the price and emissions factor
currently tied to those nodes. This improvement is most no-
ticeable when there are differences between the electricity
prices or emissions factors across the nodes in the network.
If real-time pricing is available, the magnitude of these
differences changes as a day progresses, for a variety of rea-
sons. For example, costs may be lower outside of peak usage
hours, and different regions of a network may experience
peak traffic at different times due to time-zone differences.

We consider a number of Emission cap scenarios for
EGP, ranging from 0% reduction from LDP, to 25%, 50%,
75%, and 100% reduction (identical to LEP emissions per-
formance). These caps can change the behavior of EGP, as
dollar cost savings may have to be compromised to stay
under the emissions cap.

We average our results over 30 seeds, with each set of
requests made up of 16,560 requests to uniform randomly
chosen sources and destinations, and average holding
times of 1 h.

Requests are spread over 168 h (a week), with different
emissions and power cost values based on the time period
that they will be active. The distribution is based on the
hourly traffic model in Ref. [27], where network traffic
peaks in the evening and falls during the early morning
hours. The location of the source node in respect to different
time zones is taken into account. Each request begins its
holding time at the start of the hour in which they arrive
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to the network. Requests are assumed to be comprised of
multiple traffic flows, consolidated from the electronic
layer, such that each established lightpath consumes ap-
proximately the capacity of one wavelength. The number
of wavelengths available on a length, jWj, is set to 12 on
each link.

Each seed is solved using the Gurobi linear program
solver [45], run as a job on the Massachusetts High
Performance Green Computing Center [46], and allocated
twelve cores. Each seed was completed within a 24 h period.

Figure 5 compares the weekly totals for emissions pro-
duced and dollars spent for LDP, LEP, and BCP MILP ob-
jectives. Lines are included to show the values used for
emissions caps in later graphs. Immediately noticeable
is the curve ranging from LEP to LDP, with ηweight values
in between ranging from 0.9 to 0.1, each representing a
weight used for the BCP approach. Each η value corre-
sponds to an average value for BCP given that η value.
LEP, which is equivalent to BCP with η � 0, consumes
the fewest emissions (approximately 13740 kgCO2e), LDP
(BCP with η � 1.0) the fewest dollars (approximately $1565),
and BCP covers the curve in between. This graph shows the
trade-off that must bemade whenminimizing dollar cost or
emissions: focusing on reducing dollars consequently in-
creases the emissions, and attempting to minimize emis-
sions produced limits on the dollar savings possible. The
cheapest nodes in terms of dollar cost may often not be
the cheapest in terms of emissions during any given hour,
so a choice must be made between them when routing from
a source to a destination.

Figure 6 compares the weekly totals for emissions pro-
duced and dollars spent for each LDP, LEP, shortest hop
path (SHP), shortest distance path (SDP), BCP, and EGP.
SHP, being dollarcost blind, costs more than any of the
energy-focused approaches, but approximately matches
the BCP approach with a weight of 0.7 in terms of emis-
sions. This is compared to SDP, which chooses paths based
on minimizing the physical distance that a path traverses

and performs by far the worst in regards to both emissions
and dollars. This highlights a key takeaway of the evalu-
ation. The total dollar cost and emissions is dependent
on how many nodes are included in the path, as costs
are incurred for each node used for transmission. The
physical length of each network link has no correlation
with the dollar or emissions cost of using a node, so focusing
on reducing path length provides no savings. Note that we
have also included an ideal point on the graph where both
the total emissions (LEP) and the total dollar cost (LDP)
are minimized, for comparison with our other objectives.

Over the course of the simulated week, real-time elec-
tricity price decreases after midnight, whereas in regions
where a flat rate is used the price remains the same.
LDP, BCP, and EGP, as they factor in the dollar cost of
the route, can avoid transferring data through the flat-rate
nodes during those cost-saving periods as much as possible.
The emissions produced in different regions can vary at dif-
ferent times as well. Weather conditions may change the
performance of renewable resources. Sunny or windy
weather can increase the share of renewable resources
in themarket through solar or wind power sources and lead
to lowering the emissions factor for nodes that use those
resources. LEP, BCP, and EGP therefore tend to pass
the data through the path with nodes that utilize lower-
emissions power sources.

As an overall conclusion to our evaluation, the
differences between the LEP, LDP, BCP, and EGP solutions
show the choices network operators will have to consider in
trying to reduce cost (either dollars or emissions) in optical
core routing. If dollars are the only concern, LDP can be
used for a routing policy, while LEP is appropriate for min-
imizing emissions. BCP can provide solutions (particularly
around η � 0.7) that can provide both moderate cost
savings and a noticeable reduction of impact on the envi-
ronment. EGP can go even further by making a decision
for each request, rather than the entire request set, on

Fig. 5. Total electricity expenditure versus total emissions for
LDP, LEP, and BCP with various η during the week.

Fig. 6. Total electricity expenditure versus total emissions for
LDP, LEP, BCP, SDP, SHP, and EGP with various η during the
week.
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whether it is more effective to prioritize reducing dollar
cost or emissions. This case-by-case flexibility enables it
to avoid selecting lengthy paths that, while potentially
cheap in terms of dollars or emissions, can be very costly
in terms of the other metric. The electricity cost of the
BCP (η � 0.7), SHP, SDP, and EGP (with a 50% emissions
cap) objectives are compared to the optimal LDP in Fig. 7. A
similar comparison to LEP in terms of emissions is shown
in Fig. 8. These two graphs illustrate how the costs and
emissions can fluctuate over time, both within a single
day and over the whole week.

B. Evaluation of Logistic Regression Model

We used a well-known machine learning library [47] for
implantation of a logistic regression with a L2 penalty in
Python. The input variable consists of 10 features that pre-
dict η for the Section VI.F MILP. The dataset is divided into
two parts, with some percentage for training and the re-
maining for testing the accuracy of the model’s predictions.

Figure 9 shows the results of the logistic regression
evaluation of the model for different training datasets with
different sizes. The logistic regression model aims to pre-
dict the η value in order to offer a real-time alternative
to MILP for solving this problem.

Figure 9 shows the accuracy of the predictions, and the
predicted η values themselves, given different partitions of

the dataset into training and testing subsets. For example,
10% testing size indicates that 90% of the data have been
used for training the model and 10% of records from the
dataset have been used for testing the model. The testing
verifies the accuracy of the model for predicting unseen re-
cords in the training dataset. The figure also shows an ac-
curacy bar for each selected dataset size and η value line for
different selected training dataset sizes. As the number of
requests in the training set is increased, the predicted η
comes closer to the actual average η Fig. 9. The model is
most accurate when the dataset is made up of 808,024
and 738,024 records.

The best results show 92.5% accuracy for predicting η,
which happens when 70% of the data is used for training
and 30% for testing purposes, which is 42.5% better than
random selection. By employing machine learning with
92.5% accuracy, given that a number of requests have been
calculated ahead of time and used for training, the operator
can often find a cost-effective path between any source and
destination by using the η output of the model to determine
which path to choose. Although the best model, with 70%
and 30% of records for training and testing, respectively,
shows the best performance, even smaller training and
testing datasets show reasonable and efficient results com-
pared to the random baseline. For instance, the difference
in accuracy between the largest dataset (808,024 records)
and the smallest dataset (608,024 records) is less than 10%.
This means that even when considering only the minimum

Fig. 7. Electricity cost comparison of LEP, BCP, SHP, SDP, and EGP versus LDP in 14-node NSFnet.

Fig. 8. Emissions comparison of LDP, BCP, SHP, SDP, and EGP versus LEP in 14-node NSFnet.

Fig. 9. Logistic regression model results.
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number of records, we are still able to achieve more than
80% accuracy when predicting the value of η. We also
examine our proposed solution for the larger 24-node
USnet [1] and similarly compare the machine learning
results to the MILP results. The results show 92.8% accu-
racy for predicting η, which happens when 70% of the data
is used for training and 30% for testing purposes. Given
the similarity between the results for NSFnet and
USnet, we have omitted this additional data due to space
constraints.

IX. CONCLUSION

Economic and environmental restrictions are two main
criteria for any energy consumer. Neither can be improved
substantially without impacting the other. In this paper, we
investigated approaches for mitigating the environmental
and economic concerns of ICT simultaneously by employ-
ing MILP and machine learning. Our approach promises
economical and ecological improvement for data-center
network operations by formulating electricity cost and
emissions of optical data-center networks as a multi-
objective function that can balance between minimizing
the electricity cost and the emissions. The numerical re-
sults show that the proposed approach can be an effective
solution for network operators looking to improve the
dollar or emissions efficiency of their network. Through
employing a logistic regression model, we found an effec-
tive way for network operators to choose an economic green
path with little computation time, given that the model has
been sufficiently trained. This will enable operators to
react to changes in price and emissions in real time, maxi-
mizing the potential for savings for both themselves and
the environment. The model is able to predict the η value
with accuracy of up to 92.5% by considering a dataset of
808,024 records when it is divided into 70% and 30% for
training and testing, respectively.

This topic is open for future investigation. Additional
topologies and pricing models can be explored to determine
if our conclusions hold under different conditions. This
paper proposes basic tools for participation of ICT in the
power markets. There are a number of areas for future
work to explore. Ourmodel does simplify some factors, such
as the power consumption of regenerators, which are nec-
essary for transmitting over long distances. Future work
can incorporate such factors to add more realism to the
model. A sizable percentage of data-center network traffic
is machine-to-machine, which is mostly flexible with re-
gard to scheduling. Further investigation can lead to the
development of new algorithms to shift traffic in the time
domain and merge this shift in time with flexible selection
of geographical locations, which can help maximize the
benefit of participation in the demand response program.
Paradigms such as advance reservation or delayed alloca-
tion could incorporate load shifting when scheduling traf-
fic. On the other hand, big electricity consumers buy the
granted part of their coming day consumption from day-
ahead markets then provide the rest of their needed
electricity from real-time markets. More investigation is
required to analyze the combination of these two markets

for optical data-center networks and to propose a novel
manner to predict the network traffic needs for the day
ahead. Network operators can shift the load in location
or time, changing the amount of energy drawn from either
of these two markets to achieve greater savings.
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