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Abstract—The performance of a data-driven quality-
of-transmission (QoT) model is investigated on a dynamic
metro optical network capable of supporting both unicast
and multicast connections. The data-driven QoT technique
analyzes data of previous connection requests and,
through a training procedure that is performed on a neural
network, returns a data-driven QoT model that near-
accurately decides the QoT of the newly arriving requests.
The advantages of the data-driven QoT approach over the
existing Q-factor techniques are that it is self-adaptive, it
is a function of data that are independent from the physical
layer impairments (PLIs) eliminating the requirement of
specific measurement equipment, and it does not assume
the existence of a system with extensive processing and stor-
age capabilities. Further, it is fast in processing new data
and fast in finding a near-accurate QoT model provided that
such a model exists. On the contrary, existing Q-factor mod-
els lack self-adaptiveness; they are a function of the PLIs,
and their evaluation requires time-consuming simulations,
lab experiments, specific measurement equipment, and
considerable human effort. It is shown that the data-driven
QoT model exhibits a high accuracy (close to 92%-95%) in
determining, during the provisioning phase, whether a con-
nection to be established has a sufficient (or insufficient)
QoT, when compared with the QoT decisions performed
by the Q-factor model. It is also shown that, when sufficient
wavelength capacity is available in the network, the net-
work performance is not significantly affected when the
data-driven QoT model is used for the dynamic system in-
stead of the Q-factor model, which is an indicator that the
proposed approach can efficiently replace the existing
Q-factor model.

Index Terms—All optical networks; Multicast routing;
Quality of transmission; Neural networks.

I. INTRODUCTION

R ecent advances in optical networks, which are ex-
pected to support traffic that will be heterogeneous
in nature (i.e., capable of supporting unicast and multicast
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traffic), have made bandwidth-intensive point-to-multi-
point applications widely popular. However, if such applica-
tions are offered in transparent optical networks, the
physical layer impairments must be taken into considera-
tion to ensure that the signal can be correctly detected at
the receiver [1]. Several works exist in the literature that
use different representations for modeling the most impor-
tant physical layer effects that can accumulate in a trans-
parent optical network, such as amplified spontaneous
emission (ASE) noise, crosstalk, optical filter concatenation,
and polarization mode dispersion (PMD), among others
[1,2]. One approach for the modeling of the physical layer
is based on the physical path @-factor, which is subsequently
used to calculate the bit error rate (BER) of the system, a
parameter that is difficult to evaluate upfront. In these
representations, worst-case budget values are usually in-
cluded for accounting for the physical layer effects that
are difficult to be accurately evaluated (e.g., crosstalk,
PMD, polarization dependent gain/loss, etc.) and have been
previously evaluated statistically [3]. The latter approach
involves time-/frequency-domain Monte Carlo simulations
on true measurements for each one of the PLIs that are
presentin a transparent optical network [3]. Although these
representations are valuable at the engineering and perfor-
mance evaluation stages of a network, upon network
changes the aforementioned time-consuming procedure
needs to be repeated for updating the @-factor model.

In this work, a robust QoT decision approach is explored,
which is based on a data-driven technique from the context
of pattern recognition. In particular, a state-of-the-art feed-
forward neural network is utilized for analyzing QoT data
of previously established connections aiming at finding a
QoT decision model of high accuracy. The approach inherits
the advantages of neural networks; thus it is self-adaptive,
fast in finding an accurate model (provided that such a
model exists), fast in processing new data, and does not as-
sume the existence of a system with extensive processing
and storage capabilities [4]. Most importantly, the proposed
approach is independent from the PLIs, eliminating the
specific measurement equipment that @-factor models
require for evaluation/re-evaluation purposes.

A data-driven QoT approach for multicast-capable metro
networks was first introduced in our previous work
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presented in [5]. In [5], the connection features that effec-
tively contribute to the data-driven QoT model were for the
first time identified, and the problem was formulated
according to the selected features and according to the
specific feed-forward neural network (NN) chosen for
training/validating the QoT model. Historical QoT data
were generated from the @-factor model described in detail
in [2] assuming the multicast-capable architecture/
engineering reported in [5] and references therein. The ap-
proach was validated for two metro area networks exhibit-
ing a high accuracy for both networks. For data-generation
purposes, a static system was assumed utilizing a single
wavelength.

In this paper, we extend the previous work [5] by
exploring a data-driven QoT approach on a dynamic im-
pairment-aware unicast/multicast routing and wavelength
assignment (JA-UMC-RWA) system in which multiple
wavelengths are present, and the connections arrive and
terminate in a dynamic (online) fashion (provisioned and
terminated on the fly). Thus, the novelty of this work
stems from the fact that the data-driven QoT problem is
re-formulated by taking into account the existence of differ-
ent wavelengths in the network and without a priori
knowledge of all the connections in the network. Four
cases are investigated. In each case, the network utilizes
a different number of wavelengths, that is, 4, 8, 16, or
32 wavelengths for each link of the network. Upon the
establishment of a connection, the wavelength assigned
to that connection is reserved, and it is released when
the connection terminates.

Historical data are generated from the dynamic IA-
UMC-RWA algorithm and are used for training/validating
a neural network [6], according to a known supervised
learning algorithm [7]. The accuracy of the trained data-
driven QoT model is evaluated by comparing the QoT
decisions of the data-driven model to the QoT decisions
of the @-factor model, from which the historical data were
extracted. Additionally, the network performance is evalu-
ated when the data-driven QoT model is used in conjunc-
tion with the ITA-UMC-RWA algorithm instead of the
conventional @-factor model. For every wavelength case
examined, the data-driven QoT model exhibited a high
accuracy (close to 92%-95%) in determining, during the
provisioning phase, whether a connection to be established
has a sufficient (or insufficient) QoT, when compared with
the QoT decisions performed by the @-factor model. Also,
when sufficient wavelength capacity is available in the
network, it was shown that the network performance was
not significantly affected by the data-driven QoT model,
an indication that the proposed approach can efficiently
replace the existing @-factor model.

Given the increased problem complexity, compared with
the one investigated in [5], the data-driven QoT model is
now trained on an NN utilizing a larger number of units.
The dropout regularization technique [6] was used to
allow for the network (with more parameters) to be trained
effectively, without getting prone to overfitting. Dropout
has been the first and the most popular regularization
technique for NNs [6]. In essence, it consists of randomly
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dropping different units of the network on each iteration
of the training algorithm. In doing so, only the parameters
related to a subset of the network units are trained on
each iteration. This ameliorates the associated network
overfitting tendency, and it does so in a way that ensures
that all network parameters are effectively trained. NNs
with dropout are trained using stochastic optimization
techniques, which allow for lower memory requirements.
This includes algorithms such as Adam [7], Adagrad [8],
and others. In this work, we opt for Adam, as it has been
shown in [7] to converge faster than Adagrad in conjunction
with the dropout regularization technique.

The rest of the paper is organized as follows: In Section IT
related work is discussed followed in Section III by the
problem statement and the approach overview. In
Section IV the data-driven QoT problem is formulated, and
in Section V the dropout technique [6], used during train-
ing the data-driven QoT model, is described. Section VI
describes the data-generation procedure for the dynamic
network; Section VII discusses the experimental procedure
used for validation purposes, and Section VIII describes
some of the practical feasibility issues that arise in this
work. Finally, Section IX offers concluding remarks.

II. RELATED WORK

Related works exist in the literature that examine the in-
ferential QoT framework by either focusing on designing a
software defined network (SDN) platform capable of
supporting data-driven QoT decisions or by proposing
data-driven approaches for accurate QoT decisions [9—12].
Specifically, the authors of [9] proposed a transport SDN ar-
chitecture and presented new data for devices, network el-
ements, and SDN applications, in order to enable optical
networks to support new services and virtualization with
flexibility and scalability. Experimental results were
shown, demonstrating optical network self-adaptation for
sustaining QoT in the advent of optical impairments. In [9],
only point-to-point connections were considered, and an op-
tical signal-to-noise ratio (OSNR) monitoring scheme was
utilized for keeping track of the physical impairments.
However, no specific machine learning techniques were
proposed.

Addressing the problem from a different point of view,
the authors of [10] explored the benefits of utilizing
data-driven models for QoT decisions. However, in [10],
only point-to-point connections were assumed, and no spe-
cific machine learning approaches were proposed. This
work was extended in [11], where a data-driven QoT esti-
mator was proposed for classifying lightpaths into high- or
low-quality categories in impairment-aware wavelength-
routed optical networks. In particular, the technique
presented was based on case-based reasoning (CBR), an
artificial intelligence technique that solves new problems
by exploiting previous experiences, which are stored in a
knowledge database.

Finally, in [12] a Gaussian noise (GN) model was pro-
posed that is able to estimate, quickly and accurately,
the OSNR of the optical channels in uncompensated
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coherent transmission systems. The GN model seems to be
a promising candidate for being a useful tool for system and
network analysis design and control, as it is more easily
exploitable, both analytically and numerically, compared
with other models that were previously published
(i.e., time-consuming Monte Carlo simulations are not re-
quired). However, in that work, no specific network scenar-
ios were addressed. In summary, for all aforementioned
works, only point-to-point connections were considered.
To the best of our knowledge, the data-driven QoT decisions
problem addressing multicast connection was for the first
time examined in our previous work, as presented in [5].

Specifically, in [5], a data-driven technique for analyzing
quality-of-transmission (QoT) data of previous connection
requests was proposed for accurately deciding the QoT
of the newly arriving multicast requests in metro optical
networks. In [5] the approach was examined on a static
impairment-aware multicast routing system assuming the
use of a single wavelength. In this paper, the work in [5] is
significantly extended by examining the data-driven QoT
decision problem on a dynamic multicast-capable network
utilizing multiple wavelengths.

III. PROBLEM STATEMENT AND APPROACH OVERVIEW

The existing QoT model for multicast connections [2,13]
is merely a function of the physical layer impairments
and is based on the @-factor modeling approach presented
in [3]. The Q-factor model was evaluated with time-
consuming Monte Carlo simulations, which are based on
stochastic numerical sampling from distributions, and
each PLI (e.g., distortion-induced penalty due to filter
concatenation, crosstalk, ASE noise, polarization mode
dispersion, etc.) was evaluated by conducting experiments
in the lab with the appropriate measurement equipment. A
detailed analysis for the evaluation of each impairment
and the procedure followed can be found in [3] and refer-
ences therein. Although the existing analytical @-factor
model is valuable for evaluating the QoT of a connection
prior to its establishment, upon network changes (i.e.,
network upgrades, equipment repairs, equipment replace-
ment, aging, etc.) the time-consuming procedure described
in [3] must be conducted all over again. This, however,
entails the usage of specific equipment, lab measurements,
considerable human effort, and a process for deciding
whether model re-evaluation is really necessary or not.
In this work we explore a data-driven QoT decisions
approach that is capable of finding a model that is self-
adaptive; it does not require extensive lab measurements
or specific equipment, it is time efficient, and it does not
require the existence of a system with extensive processing
and storage capabilities.

For finding such a model, a feed-forward neural network
is utilized, as feed-forward neural networks have been re-
ported to be fast in model evaluation and processing new
data, result in compact models (as they require only a few
training parameters), be adaptive during training, and also
exhibit a high generalization performance. A detailed
discussion on feed-forward neural networks and their
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advantages over other optimization methods in the context
of pattern recognition can be found in Chapter 3 of [4].

The general framework of the proposed approach, which
entails the utilization of the neural network, is briefly
described as follows:

(1) Data from the analytical @-factor model are
generated (or real QoT data are utilized if these are
available).

(2) These data are represented in a vector form that is
independent from the PLIs but capable of describing
the QoT of the connections requesting to be established
in the network of interest.

(3) The feed-forward neural network is trained on a train-
ing data set.

(4) The accuracy of the neural network model is validated
on a data set other than the training data set.

For training purposes, an on-line procedure can be used
instead of a batched (off-line) procedure, in which patterns
are sequentially fed into the neural network allowing
each time for model updates [4]. According to the on-line
training procedure, the model can be updated sequentially
in the evolving network with insignificant processing
overhead. Thus, the technique is self-adaptive, while re-
evaluation decisions are not really necessary. Note that
the above procedure can be used for any network scenario,
provided that the QoT data are represented in a way that
is independent from the PLIs but reflects the QoT of the
connections requesting to be established in the network
of interest.

IV. PrROBLEM FORMULATION

The data-driven QoT problem is treated as a binary clas-
sification problem in which the goal is to take an input vec-
tor x and to assign it to a discrete value y, where y € {0, 1}
[4]. In this work the set D = {(x(j),y()))j = 1,...,n} is de-
fined to be the historical data set in which pattern j repre-
sents lightpath j, y(j) €0,1 is the target value, and
x(NT = [x1.(). %27 23(). 24 (). %5 (7). x6(7)]. Specifically,

® x,(j) is the nominal path length of j;

® x5(j) is the number of erbium doped fiber amplifiers
(EDFAS) in j;

® x3(j) is the nominal maximum link length of j;

e x4(j) is the degree of the destination node in j;

® x5(j) is the nominal wavelength on which j is estab-
lished; and

® x5(j) is the bias b of the first layer of the neural network.

Regarding the target values, y(j) = 0 when the QoT ofj is
insufficient, and y(j) = 1 otherwise.

A detailed analysis on how the features x1(j), x2(j), x3()),
and x4(j) are extracted and selected for successfully
describing the multicast connections and their associated
QoT can be found in our previous work in [5]. In this paper,
another feature is included, denoted as x5(j), representing
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the specific wavelength on which lightpath j is established.
Briefly, in [5], it was experimentally shown that none of the
X1, X9, X3, and x4 features can be considered separately for
accurate QoT decisions, due to the unacceptable high un-
certainty regions that were created between the sufficient
and insufficient QoT input features, resulting from a single
type of feature (i.e., resulting only for type x; feature).
Rather it was shown that, if a number of different types
of features are considered jointly, two near-separable sets
are possible.

Apart from the data features xq, x9, x3, and x4, other
features were also extracted (for the work in [5]) as candi-
date input data features to the learning algorithm. Such
features were the degree of the source node and the mini-
mum/average link lengths of each lightpath. However, they
were not considered in the learning algorithm, as they were
either not found to contribute additional information or
were found to be uncorrelated to the QoT, at least for
the network architecture/engineering under consideration.
As an example, the splitting losses of source/intermediate
node/s in the lightpaths are uncorrelated to the QoT be-
cause, in the engineering case considered, variable optical
attenuators are used to equalize the signals at the EDFAs
just after the optical splitters. Thus, the equalization
procedure “hides” the amount of attenuation at these
nodes, as the attenuators equalize the total power of incom-
ing wavelengths to a specified worst-case value determined
by the maximum splitting losses (maximum degree node)
in the network (eventually, the power of all signals into
the EDFAs is equal). At the destination nodes, the signals
are dropped before facing equalization. Thus, only the des-
tination’s node degree is included as a feature correlated to
the QoT (valuable feature for the learning process).

V. NEURAL NETWORKS WITH DROPOUT

As pointed out, during training, the dropout technique
[6] is adopted. Dropout is a regularization method for pre-
venting units from co-adapting too much by randomly drop-
ping units (along with their connections) from the neural
network during training.

For describing the dropout neural network model, con-
sider the neural network of Fig. 1 with one hidden layer.
Let [ € 0,1 index the input layer and the hidden layer of
the network, respectively. Let z® denote the vector of in-
puts into layer [ and o denote the vector of outputs from
layer [, with 0¥ = x being the input. W® and »?® are the
weights and biases at layer I The feed-forward operation
of the standard neural network of Fig. 1 is described by
Egs. (1) and (2), (for any hidden unit %2 and for [ = 0):

zgﬂ) _ w}(€l+1)01 + b;elﬂ)’ 1)

Og+1) :f(zl(?/l+1))’ (2)

where f can be any activation function. In this work the
activation function is given by Eq. (3):
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Fig. 1. Neural network with six input units, one hidden layer
with several units, and one output.

2

f) = tanh() = 1 o !

3)

With dropout [6], the feed-forward operation becomes

Y ~ Bernoulli(p). 4)
00 = rD 4 o0, (5)
z;el*l) = w,(elH)ﬁ(l) + b,(eHl). (6)
Ol(el+1) =f(zg+1)), )

where * denotes an element-wise product, and r?) is a vec-
tor of independent Bernoulli random variables, each of
which has probability p of being 1. This vector is sampled
and multiplied element-wise with the outputs of that layer,
0¥, to create the thinned outputs 6. An example of a
thinned network produced by applying dropout to the net-
work is illustrated in Fig. 2. The thinned outputs are then
used as input to the next layer, and this process is applied
at each layer. For learning, the derivatives of the loss func-
tion are backpropagated through the subnetwork. In this
work, the mean-square loss function is utilized:

E=7) u()-0())’. ®)
Jj=1

where n is the number of the input patterns, y(j) is the ex-
pected output value for pattern j, and o(j) is the output
evaluated by the training algorithm after the presentation
of pattern j to the network.

Dropout neural networks are trained using stochastic
gradient descent in a manner similar to standard neural
networks, with the only difference being that, for each train-
ing case in a mini-batch, a thinned network is sampled by
dropping out units. Forward and backpropagation for that
training case are performed only on this thinned network.
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Fig. 2. Example of a thinned network produced by applying
dropout to the network of Fig. 1. Crossed units have been
dropped.

The gradients for each parameter are averaged over the
training cases in each mini-batch. Any training case that
does not use a parameter contributes a gradient of zero
for that parameter [6]. In this work, for training the dropout
neural network, the Adam algorithm is used, as described in
[7]. In general, the Adam algorithm is an efficient stochastic
optimization method that only requires first-order gra-
dients with little memory requirements; it is well suited
for problems that are large in terms of data and/or param-
eters, and it has been shown to outperform other stochastic
optimization methods [7]. At test time, the trained weights
are scaled as W = pW®, and the resulting neural net-
work is used without dropout [6].

VI. DaTA SET GENERATION

In this section we describe how the data set D is gener-
ated from a dynamic IA-UMC-RWA system. For data gen-
eration, the network of Table I is used. Note that the
network of Table I was generated in such a way so as to
meet the characteristics of a metro area network for which
the @-factor model is valid (in terms of average distance
between the network nodes, number of network nodes,
average node degree). The network statistics are given
in Table II.

For generating the data set D = {(x(j).y(j))lj = 1.....n},
the @-factor model described in detail in [2,13] in combina-
tion with the multicast-capable network architecture/engi-
neering with fixed TXs/RXs reported in [13] were used. In
order to generate the data set D, 10,000 requests were gen-
erated with the multicast group sizes varying between 1
and 7, thus accounting for both multicast and unicast con-
nections. Requests were generated according to a Poisson
process with exponentially distributed holding times with
a unit mean, for a network load of 100 Erlangs. Data were
generated assuming that 4, 8, 16, and 32 C-band wave-
lengths were available. The @-threshold was set at 9 dB,
corresponding to a BER of 10-1°. Note that such a small
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TABLE I
NETWORK CONNECTIVITY

Link Distance (km) Link Distance (km)
1, 2) 100 1, 3) 100
(2, 3) 75 (2, 4) 100
1,9 80 3, 6) 100
(4, 11) 70 (4, 5) 60
(5, 6) 75 5,7 60
(6, 8) 100 (6, 13) 90
(7,9 60 (9, 10) 60
(8, 10) 100 (10, 12) 75
11, 14) 100 (10, 14) 100
(12, 13) 100 (13, 14) 60
1, 4) 100 (4, 10) 60
2,9 70 (5,11) 90
(3, 14) 30 (13, 8) 40
3, 5) 50 9, 14) 25
(6, 14) 50 9, 12) 40
(10, 6) 25 (7, 11) 40
(3, 12) 30 6,9 35
(13, 4) 40 (7, 1) 60
12, 5) 100 (3, 10) 90
11, 12) 80 8,9 100
11, 1) 100 (10, 11) 60
4, 14) 20 (5, 14) 100
(2,12) 30 (3,13) 20
(5, 10) 40 (5,9) 30
(10, 13) 30 9, 3) 100
TABLE II
NETWORK STATISTICS
Number of nodes 14
Number of bidirectional links 50
Average distance (km) 67
Maximum distance (km) 100
Minimum distance (km) 20
Average node degree 7.15
Minimum node degree 4
Maximum node degree 10
Diameter (km) 160
Diameter (hops) 3

BER was set, as FEC coding was not assumed in the net-
work receivers. Moreover, doing so, we have managed to
generate a data set with a large number of patterns with
insufficient QoT for training/validating the data-driven
QoT model.

Figure 3 shows a flowchart of the dynamic IA-UMC-
RWA algorithm used for data generation. For routing
the multicast connections the Steiner tree (ST) heuristic
[14] was used, for routing the unicast connections the
Dijkstra’s algorithm [15] was used, and for the wavelength
assignment the first-fit algorithm [16] was utilized. Briefly,
the dynamic IA-UMC-RWA algorithm, for each call, calcu-
lates on wavelength u a unicast/multicast lightpath/light-
tree (P/T), and the call is accepted if

e there are available TXs/RXs to support the connection;


https://www.researchgate.net/publication/286794765_Dropout_A_Simple_Way_to_Prevent_Neural_Networks_from_Overfitting?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/286794765_Dropout_A_Simple_Way_to_Prevent_Neural_Networks_from_Overfitting?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/281833618_Impairment-aware_Multicast_Session_Provisioning_in_Metro_Optical_Networks?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/281833618_Impairment-aware_Multicast_Session_Provisioning_in_Metro_Optical_Networks?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/269935079_Adam_A_Method_for_Stochastic_Optimization?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/269935079_Adam_A_Method_for_Stochastic_Optimization?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/246896228_Multicast_Routing_in_All-Optical_Wavelength-Routed_Networks?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/242562037_A_Note_on_Two_Problems_in_Connexion_with_Graphs?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/224369611_Multicast_Routing_Algorithms_Based_on_Q-Factor_Physical-Layer_Constraints_in_Metro_Networks?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==
https://www.researchgate.net/publication/3282736_Multicast_routing_algorithms_and_protocols_A_tutorial?el=1_x_8&enrichId=rgreq-61392c6fd1d672e9746850de1dcc33ec-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc3MTMyODtBUzo0NDU3ODM2NTM3ODU2MDFAMTQ4MzI5NDUxMzcxMA==

Panayiotou et al.

u=1
U wavelengths

Available
TX and RX

Find lightpath/light-tree (P/T) that
spans the source and destination sets

No
u=u+l

Calculate Q-factor for all destination nodes on
P/T and find the minimum value of Q (Q,;,)-
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Fig. 3. Flowchart of the dynamic IA-UMC-RWA algorithm utiliz-
ing the @-factor model. Note that U denotes the total number of
wavelengths in the network, P denotes a point-to-point lightpath,
and T denotes a multicast light-tree.

[ Accept request | I

e there exists a lightpath/light-tree from the source to
every destination node in the call; and

e the @-factor is above the @-threshold for every destina-
tion node in the call.

If at least one of the constraints is not satisfied, a new
wavelength assignment is implemented, and the heuristic
is repeated until no new wavelength assignment is pos-
sible. In that case, the call is blocked.

The data set D was created during the execution of the
dynamic IA-UMC-RWA algorithm. In particular, features
x(j) and y(j) were extracted from each lightpath/light-tree
J attempted to be established into the network. For each
light-tree a number of patterns was generated by decom-
posing each light-tree to its constituent lightpaths. The
Q-factor of each destination was compared with the pre-
determined @-threshold and converted to the binary target
value y(j); ¥(j) = 0 for a @-factor below the predetermined
@-threshold, and y(j) = 1 otherwise. Details regarding
the number of patterns generated for each wavelength
case, U =4, U =8, U = 16, and U = 32 can be found in
Table III.

TABLE III
PATTERNS GENERATED FOR EACH WAVELENGTH CASE
U=4 U=8 U=16 U=32
# patterns in D 50,322 82,010 91,221 91,338
# patterns with y(j) =1 36,152 60,966 69,594 69,300
# patterns with y(j) =0 14,170 21,044 21,627 22,038
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VII. EXPERIMENTAL RESULTS

For the experiments, the neural network (NN) toolbox
developed by the author of [17] was used on a MATLAB
machine with a CPU at 2.60 GHz and 8 GB RAM. The data
set D was divided into the training data set D" and the test
data set 7' in such a way that an equal number of patterns
with y(j) =1 and y(j) = 0 was included in each one of
the sets. In general, the training set is used to teach the
network, while the test set provides a completely indepen-
dent measure of network accuracy. For every wavelength
case examined, the neural network was trained with 100
hidden units and a batch size of 1000 patterns.

A. Model Accuracy

Tables IV-VII summarize the accuracy achieved within
the test data set D, for the cases of U =4, U = 8, U = 16,
and U = 32, respectively. Information regarding the num-
ber of patterns in the training data set (D") and the test
data set (D’) is also shown in Tables IV-VII. Note that,
for each wavelength case examined, the data-driven QoT
model was evaluated for three D" data sets with each
one containing a different number of patterns. This was
done in order to investigate the impact of the number of
training patterns to the model accuracy and time conver-
gence. For each D" data set, information regarding the
dropout fraction (p), the number of epochs required for
model convergence, and the training time is also reported
in Tables TV-VII.

According to Tables IV-VII, the training time for every
wavelength case and for every D" data set examined indi-
cates a fast model convergence (the model converged
within 1.5-5.3 min). Regarding the impact of the number
of patterns to the training time, the results indicate that

TABLE IV
Accuracy Resurrs For U = 4

# of patterns in D" 6000 12,000 24,000

# of patterns in D’ 2000 2000 2000
Dropout fraction (p) 0.8 0.8 0.8
# of epochs 700 700 700
Training time in min 0.7 1.5 3
Class 1 Acc. (%) 90.8 87.6 89
Class 2 Acc. (%) 87.3 100 99.9
Total Acc. (%) 89 93.8 94.45

TABLE V
Accuracy ResuLts ForR U = 8

# of patterns in D" 6000 12,000 24,000
# of patterns in 7' 2000 2000 2000
Dropout fraction (p) 0.8 0.8 0.8
# of epochs 700 700 700
Training time in min 0.6 1.5 3
Class 1 Acc. (%) 88.5 85 90
Class 2 Acc. (%) 96 100 929
Total Acc. (%) 92.25 92.5 94.5
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TABLE VI
Accuracy Resurts For U = 16

# of patterns in D" 8000 18,000 36,000

# of patterns in D* 2000 2000 2000
Dropout fraction (p) 0.75 0.75 0.75
# of epochs 800 800 800
Training time in min 1 2.6 5.3
Class 1 Acc. (%) 74.4 87.5 93.3
Class 2 Acc. (%) 100 99.9 96.4
Total Acc. (%) 87.2 93.7 94.8

TABLE VII
Accuracy ResuLts For U = 32

# of patterns in D" 8000 18,000 36,000

# of patterns in D’ 2000 2000 2000
Dropout fraction (p) 0.75 0.75 0.75
# of epochs 800 500 800
Training time in min 1 2 5.3
Class 1 Acc. (%) 91.7 87.7 93.7
Class 2 Acc. (%) 86.6 99.1 97.4
Total Acc. (%) 89.15 934 95.5

the training time increases as the number of patterns
increases, but this increase is not significant (up to
5.3 min for the largest in size dataset). Regarding the ac-
curacy results, each table shows the overall model accuracy
achieved (Total Acc.), and the model accuracy achieved in
each one of the two Classes, 1 (Class 1 Acc.) and 2 (Class 2
Acc.). Note that, in Tables IV-VII, Class 1 refers to the
patterns with sufficient QoT, and Class 2 refers to the
patterns with insufficient QoT. The number of correctly
classified patterns in the entire data set D' can be evalu-
ated by multiplying the total accuracy percentage by the
number of patterns in the D’ data set (Total Acc. x 2000).
The number of correctly classified patterns in each class
can be evaluated by multiplying the class accuracy by half
of the number of patterns in the D' data set (i.e., Class
1 Acc. x 1000).

According to the results shown in these tables, the
approach achieved an overall high accuracy for every wave-
length case examined, particularly for the larger training
data sets (i.e., the D" data sets that include more than or
equal to 12,000 patterns). For the D" data sets that include
fewer patterns (i.e., 6000 or 8000 patterns), the results in
most wavelength cases (U =4, U = 16, U = 32) cannot
be considered to be of high accuracy. This indicates the im-
portance of considering a large enough D" data set during
the training procedure. Note that the D" data set size,
which is capable of returning an accurate enough model,
can only be evaluated empirically for each network sce-
nario. In general, as the number of patterns in the D" data
set increases, so does the total accuracy. According to the
results of the largest in size D" data sets, the approach
achieved an overall accuracy of 94.45% for the case of
U = 4, 94.5% for the case of U = 8, 94.8% for the case of
U = 16, and 95.5% for the case of U = 32. These results
correspond to the rightmost column of each one of the
Tables IV-VII.
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Regarding the accuracy results in each class, the ap-
proach achieved a high accuracy in both classes, for every
wavelength case examined. Note that the results show
that Class 2 achieved an accuracy nearing 100%, meaning
that a pattern with insufficient QoT will almost never be
perceived as a pattern with sufficient QoT (the end-users
will almost never experience a connection with unaccept-
able QoT). The above can be observed by inspecting the last
two columns of Tables IV-VII for which the approach
achieved an overall high accuracy (92%—-95%) for every
wavelength case. In comparison, it is interesting to note
that, when the BP algorithm [18] was also used for training
the neural network as described in [5], the resulting
data-driven QoT model achieved, for every wavelength
case examined, an accuracy close to 89%. This accuracy
was the best result achieved after a number of trials that
examined different learning rates, numbers of hidden
units, and weight initializations.

B. Performance Evaluation

The network performance, in terms of blocking probabil-
ity, is also evaluated when the QoT decisions are taken
utilizing the data-driven QoT model and is compared with
the network performance achieved when the @-factor
model is used. In order to evaluate the impact of the
QoT constraint on the network performance, results were
also obtained for the conventional UMC-RWA algorithm,
which does not account for the QoT constraint. Thus the
network performance is evaluated for three cases:

e Case 0: The QoT constraint is not considered during the
dynamic UMC-RWA algorithm.

e Case 1: The @Q-factor model is utilized in the dynamic
TIA-UMC-RWA algorithm for the QoT decisions.

e Case 2: The data-driven QoT model is utilized in
the dynamic IA-UMC-RWA algorithm for the QoT
decisions.

Figure 4 shows a flowchart for the dynamic IA-UMC-
RWA algorithm in which the data-driven QoT model, de-
noted as 0;4(j) = M (x,4(j), W), is used for the QoT decisions.
Note that x,;(j) is the features vector extracted from the
lightpath j that terminates at destination node d, W are
the trained parameters of the neural network, and o4(j)
is the output (zero or one) evaluated by the model M. In
Fig. 4 each new lightpath/light-tree (P/T) j is decomposed
to its constituent lightpath/s, one for each destination node
d € P/T with D being the total number of destination
nodes in P/T. According to the dynamic IA-UMC-RWA
algorithm of Fig. 4, a connection is accepted into the net-
work if

e there are available TXs/RXs to support the connection;

e there exists a lightpath/light-tree from the source to
every destination node in the connection; and

e 2D L 04(j) = D, where 04(j) = M(x4(j), W)V d € P/T, indi-
cating that the QoT is sufficient for every destination
node in the connection.
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< Start >
St

u=1
U wavelengths

Available
TX and RX

Find lightpath/light-tree (P/T) j that
spans the source and destination sets

u=u+l

Accept request | | Block request

Fig. 4. Flowchart of the dynamic IA-UMC-RWA algorithm utiliz-
ing the data-driven QoT model (Case 2). Note that U denotes the
total number of wavelengths in the network, P denotes a point-
to-point lightpath, and T denotes a multicast light-tree.

If at least one of the constraints is not met, a new wave-
length assignment is implemented, and the heuristic is
repeated until no new wavelength assignment is possible.
In the latter case, the call is blocked.

For the simulations, the network parameters described
in Section VI were utilized in all three cases: Case 0 (the
QoT constraint is removed), Case 1 (Algorithm of Fig. 3),
and Case 2 (Algorithm of Fig. 4). Five simulation runs were
performed for each case, and the results were averaged
over all simulation runs. Tables VIII-XI summarize the
performance results for the cases of U=4, U =38,
U = 16, and U = 32, respectively. Specifically, all tables re-
port the overall blocking probability (overall Pr{blocking}),
which is followed by the breakdown of the results to the
blocking probability due to insufficient QoT (Pr{blocking}
due to QoT) and to the blocking probability due to the lack
of wavelengths (Pr{blocking} due to wav.). For Case 0,
where the QoT constraint is not considered, all blocking
is caused due to the lack of wavelengths. For Case 2,
two different data-driven QoT models were considered.
These models are the trained models of Subsection VII.A
that correspond to the last two columns of each one of
the Tables IV-VII. For denoting the exact model considered
each time in Case 2, the total accuracy of each model is
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TABLE IX
BrockinGg ProBaBiLITY RESULTS FOR U = 8

Case 2 Case 2

Case 0 Casel (92.5) (94.5)
Overall Pr{blocking} 0.09 0.11 0.15 0.12
Pr{blocking} due to QoT - 0.04 0.1 0.06
Pr{blocking} due to wav. 0.09 0.07 0.05 0.06

included in parenthesis within the Case 2 column in
Tables VIIT-XI.

For all three cases, the results show that, as the number
of wavelengths increases, the blocking probability de-
creases. For Cases 1 and 2, when U = 4 (Table VIII) and
U = 8 (Table IX) a significant percentage of the blocking
is caused due to the QoT constraint. When U = 16
(Table X) and U = 32 (Table XI) the blocking probability
caused due to the QoT constraint becomes insignificant.
The impact of the QoT constraint to the system perfor-
mance can be viewed by comparing the Case 0 results with
the Case 1 and 2 results of Tables VIII-XI. It is clear that
the impact of the QoT constraint reduces as the number of
wavelengths increases.

As pointed out, for the wavelength cases U = 16 and
U = 32, there is insignificant QoT blocking. However, this
does not mean that connection requests of insufficient
QoT did not appear during the IA-UMC-RWA procedure.
In fact, Table III indicates that approximately 23% of the
overall lightpaths that attempted establishment were of in-
sufficient QoT. However, those requests were not blocked.
The TA-UMC-RWA algorithm just attempted to provision
them utilizing the next wavelength on the list. Because
in the two aforementioned cases enough wavelength capac-
ity exists in the network, a wavelength was eventually
found for which the QoT was found to be sufficient, and
these requests were ultimately accommodated. On the
contrary, for the U = 4 and U = 8 wavelength cases, the
capability of the IA-UMC-RWA algorithm to find alternate
wavelengths with sufficient QoT is limited due to the
small number of available wavelengths, thus resulting in
significant blocking due to insufficient QoT.

It is also important to note that, when the QoT is taken
into account (IA-UMC-RWA algorithm for Cases 1 and 2), a
drop is observed in the blocking probability due to the
lack of wavelengths, compared with the conventional
UMC-RWA algorithm (Case 0). This effect is obvious only
for the U = 4 and U = 8 wavelength cases where blocking
is present in Case 0. This is true because blocking due to
insufficient QoT means that more capacity (wavelengths) is

TABLE VIII TABLE X
BrockiNGg ProBaBiLiTY RESULTS FOR U = 4 BrockiNg ProBasiLITY RESULTS FOR U = 16
Case 2 Case 2 Case 2 Case 2
Case 0 Casel (93.8) (94.45) Case 0 Casel (93.7) (94.8)
Overall Pr{blocking} 0.42 0.44 0.44 0.44 Overall Pr{blocking} 0 0.0002 0.0014 0.0004
Pr{blocking} due to QoT - 0.15 0.25 0.21 Pr{blocking} due to QoT - 0.0002 0.0014 0.0004
Pr{blocking} due to wav. 0.42 0.29 0.19 0.23 Pr{blocking} due to wav. 0 0 0 0
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now available for future connections to be established.
Note, however, that even if additional lightpaths exist, it
does not mean that these lightpaths will satisfy the QoT
constraint. Thus, a rise in the total blocking probability
may appear (especially when not enough wavelengths
are present). This is indeed the case, as demonstrated by
the results in Tables VIII and IX that clearly show that
the overall blocking probability for Cases 1 and 2 is
eventually higher compared to the blocking probability
of Case 0.

Regarding the performance results of the data-driven
QoT model (Case 2), Tables VIII-XI clearly show that
the overall blocking probability is only minimally affected
when the data-driven QoT model is used instead of the
Q-factor model (Case 1), especially when the number of
available wavelengths in the network is large enough.
Specifically, when U = 32 (Table XI), the overall blocking
probability is near zero for both Cases 1 and 2. Further,
the breakdown of the results shows that the blocking prob-
ability due to insufficient QoT is only slightly increased,
while the blocking probability due to the lack of wave-
lengths is not affected. This is due to the fact that the
data-driven model fails by a small percentage to correctly
classify the Class 1 patterns [a percentage of the Class 1
patterns (6.3% for the total accuracy of 95.5% and 12.3%
for the total accuracy of 93.4%) are misclassified to Class
2]. This means that now the IA-UMC-RWA algorithm
has to face more patterns with insufficient QoT, compared
to the JA-UMC-RWA algorithm that utilizes the @-factor
model. Thus the QoT blocking probability increases.
However, this slight misclassification of Class 1 patterns
does not eventually affect the network performance, as the
connection requests misclassified to Class 2 are eventually
accommodated via an alternate wavelength for which the
QoT is correctly classified to Class 1.

As the number of available wavelengths decreases, the
fact that the data-driven model fails by a small percentage
to correctly classify the Class 1 patterns negatively affects
the network performance. Specifically, for U = 16 (Table X)
and U = 8 (Table IX), this slight misclassification gives an
increase in the blocking probability due to insufficient QoT
that eventually affects the overall blocking probability.
This is due to the fact that not enough wavelengths are
now available to mitigate the impact of this misclassifica-
tion (Table VI for U = 16 and Table V for U = 8). Note,
however, that as the number of training patterns increases,
and the data-driven model becomes more accurate (94.8%
accuracy for U = 16 and 94.5% accuracy for U = 8), the
overall network performance is insignificantly affected,
compared to the network performance of Case 1.

TABLE XI
BrockiNg ProBaBiLITY RESULTS FOR U = 32
Case 2 Case 2
Case 0 Casel (934) (95.5)
Overall Pr{blocking} 0 0 0.0004 0.0004
Pr{blocking} due to QoT - 0 0.0004 0.0004
Pr{blocking} due to wav. 0 0 0 0

Panayiotou et al.

It is also important to note that, for U = 8 in Case 2, a
drop occurs in the blocking probability due to the
unavailability of wavelengths, compared with Case 1. As
previously discussed, this drop is a consequence of the in-
creased blocking due to insufficient QoT caused due to the
fact that the data-driven model fails by a small percentage
to correctly classify the Class 1 patterns. Thus, increased
blocking due to insufficient QoT means that more capacity
(wavelengths) is now available for future connections to
be established. Again, even though additional lightpaths
exist, it does not mean that these lightpaths will satisfy
the QoT constraint. As shown in Table IX, the impact of
this effect reduces as the model becomes more accurate
(the inaccurate percentage of Class 1 patterns reduces
from 15% to 10% when 24,000 training patterns are used
instead of 12,000).

Finally, for the case of U = 4, the blocking probability
is unacceptably high for all three Cases: 0, 1, and 2. The
inaccurate percentage of Class 1 patterns causes an in-
crease in the blocking probability due to insufficient QoT
when the data-driven model is used, which, in turn, as dis-
cussed above, causes a drop in the blocking probability due
to the lack of wavelengths. Both Cases, 1 and 2, achieve the
same overall blocking probability (Table VIII), as the net-
work performance is limited by the number of available
wavelengths; that is, if the connections would not have
been blocked due to insufficient QoT, they would have been
blocked due to the lack of wavelengths. This conclusion is
evident when the results of Cases 1 and 2 are compared
with the results of Case 0 where the QoT constraint is
not considered.

VIII. PracticAaL FEASIBILITY CONSIDERATIONS

Regarding the practical feasibility of the proposed
approach, we have assumed a centralized approach in
which a centralized controller exists that receives the light-
path/light-tree requests and is responsible for path compu-
tation, wavelength assignment, validation of the QoT, and
lightpath/light-tree setup. Thus, we have assumed a con-
troller that maintains a centralized traffic engineering
(TE) database with detailed wavelength availability
information and is able to specify the full details of the
lightpath/light-tree (i.e., all switches and ports along the
lightpath/light-tree). The control plane can verify the fea-
sibility of the lightpath/light-tree and performs the light-
path/light-tree provisioning. Then, the controller updates
its traffic engineering database, and all the traffic
engineering parameters are stored and updated within
the controller.

From the traffic engineering database, lightpath/light-
tree information can be extracted and stored in a knowl-
edge database for training/validating the data-driven QoT
model proposed. According to the proposed data-driven
QoT approach, the input patterns x can either be readily
found or easily computed by the information included in
the centralized traffic engineering database (lightpath
length, number of amplifiers, degree of destination node,
maximum link length, assigned wavelength). Information
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regarding the QoT of the lightpaths can be obtained after
the establishment of the connections, at the destination
nodes and/or by the appropriately placed monitoring
equipment.

Centralized control plane solutions for supporting opti-
cal network technologies have been extensively considered
[9,19-21]. In this work, the proposition of a specific control
plane solution for supporting the proposed data-driven
QoT approach is out of the scope and is planned for future
work. However, regarding the existing efforts, the authors
of [9,19-21] proposed control plane solutions for optical
network technologies that are based on OpenFlow exten-
sions. In [19-21], the QoT considerations are not
specifically addressed. Only work in [9] considers the QoT
constraint during the path computation, by performing
OSNR monitoring. Further, in [22] a centralized approach
has been proposed for encompassing physical impairments
in transparent optical networks. In that work, a path com-
putation element (PCE) was considered, capable of comput-
ing a network path or route based on a network graph
and applying computation constraints during the path
computation. The PCE is aware of the physical parameters
that are stored by the PCE in a locally managed physical
parameter database. The physical parameters (i.e., polari-
zation mode dispersion, chromatic dispersion, self-phase
modulation, worst-case penalties) are obtained by the
management system or through a performance monitoring
system. Note that, while similar solutions can be developed
for supporting the proposed data-driven QoT approach,
the physical parameters will not be needed, as now only
a label is required indicating an acceptable or an unaccept-
able QoT for each lightpath attempted to be established
into the network.

Another important issue that naturally arises regarding
the practical feasibility of the proposed approach can be
stated as follows: How much data are enough for training
an accurate data-driven QoT model, and how much time
would it take for collecting such a number of data?
Clearly, there are no straightforward answers to these
questions, as the amount of collected data and the time
for this data collection depend on several factors such as
the dynamicity of the network (how quickly does the net-
work state change), the network topology, the number of
available wavelengths, the diversity of data collected,
the network equipment utilized, etc. Nevertheless, for en-
suring the diversity and quick collection of data, appropri-
ate schemes can be developed. For example, strategically
placed monitoring equipment can be used for collecting
QoT data. In doing so, QoT data at intermediate points
of the established lightpaths (not only at the destination
nodes) can be collected, enriching the historical data set.
Further, lightpaths can be established, according to a stra-
tegic plan, only for data collection purposes. The investiga-
tion of such topics is also planned as future work.

As pointed out, in the @-factor model, worst-case budget
values need to be initially evaluated for each PLI in the net-
work, either through measurements in the lab for certain
PLIs, or theoretical models for other PLIs, and these values
must be tested in the lab by performing experiments on a
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metro network. On the contrary, in the data-driven model,
only OSNR measurements are needed. These can be ob-
tained through lab experiments on a number of lightpaths
that can be established. The rest of the features associated
with the data-driven QoT model are more easily extract-
able from the lightpaths and do not depend on the PLIs
(e.g., the length of the lightpath, the maximum link length
of the lightpath, the specific wavelength on which the light-
path is established, and the degree of the destination node
in the lightpath). These features do not need any specific
measurement equipment or the utilization of theoretical
models. They are readily available after the routing and
lightpath establishment procedure takes place. Once the
network is up and running, the data-driven model can
subsequently be periodically re-trained on data extracted
from the evolving network. In doing so, the data-driven
model can become more and more accurate. Thus the sav-
ings of the proposed technique over the @-factor model in-
clude, apart from the human effort that is needed for
modeling the @-factor, the equipment savings that are re-
quired for evaluating the PLIs.

Note that, for training an initial data-driven QoT model,
the acceptable OSNR threshold can be set to a lower value
than the one the network of interest can tolerate. In doing
so, a safety margin can be included in the trained model,
resembling the safety margin included in the @-factor
model. Once a data-driven QoT model of acceptable accu-
racy is trained, then the data-driven model can only
become more accurate once it is exposed to true data col-
lected from the evolving network. This can be achieved
in an automatic manner by periodically retraining the
model, as the training procedure is not time prohibitive (re-
quired approximately 5 min for a data set of 36,000 pat-
terns). The latter, however, is not possible with the @-factor
model that includes worst-case budget values and can only
be re-evaluated through a more complex procedure.
Further, in that case, decisions would also be needed on
whether the re-evaluation procedure of the @-factor model
is necessary or not.

IX. CoNCLUSIONS

In this work, a data-driven technique is utilized for
analyzing QoT data of previous unicast and multicast con-
nection requests aiming at accurately deciding the QoT of
newly arriving connections. A @-factor model, which is a
function of each impairment present, is first utilized for
generating a QoT data set on a dynamic IA-UMC-RWA sys-
tem, which is used for training and testing an NN model.

The resulting data-driven QoT model was tested for a
metro area network utilizing 4, 8, 16, and 32 wavelengths.
In every wavelength case, the training algorithm con-
verged very fast (within minutes) in a model of high accu-
racy [close to 92%—-95% accuracy in determining, during
the provisioning phase, whether a connection to be estab-
lished has a sufficient (or insufficient) QoT, when compared
with the QoT decisions performed by the @-factor model].
The network performance was also evaluated when the
data-driven QoT model was used for the QoT decisions,
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instead of the @-factor model. The results showed that the
network performance is not significantly affected when the
data-driven QoT model is used instead of the @-factor
model, provided that enough wavelengths are present for
ensuring a practical network performance.

The advantages of the proposed approach over the
existing @-factor model are several: it is self-adaptive, it
is fast, and it does not require special measurement equip-
ment or the existence of a system with extensive processing
and storage capabilities. It can therefore replace the
@-factor model that lacks self-adaptiveness, requires lab
experiments, specific measurement equipment, and consid-
erable human effort. It is important to note that the pro-
posed technique can be applied for any network scenario
(e.g., flex-grid optical networks, different network architec-
ture/engineering, different modulation formats, etc.), pro-
vided that the data selected for the data-driven QoT
model are independent from the PLIs but reflect the QoT
of the connections requesting to be established in the
network of interest. Clearly, several practical feasibility is-
sues are still open for investigation (control plane solution,
number of data required, time required for data collection),
and these are planned for future work.
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