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Abstract—A fast Newton-based support vector machine (N-SVM) 

nonlinear equalizer (NLE) is experimentally demonstrated, for the 

first time, in 40 Gb/s 16-quadrature amplitude modulated 

coherent optical orthogonal frequency division multiplexing at 

2000 km of transmission. It is shown that N-SVM-NLE extends the 

optimum launched optical power by 2 dB compared to the 

benchmark Volterra-based NLE. The performance improvement 

by N-SVM is due to its ability of tackling both deterministic fiber-

induced nonlinear effects and the interaction between 

nonlinearities and stochastic noises (e.g. polarization-mode 

dispersion). N-SVM is more tolerant to inter-subcarrier nonlinear 

crosstalk effects than Volterra-based NLE, especially when 

applied across all subcarriers simultaneously. In contrast to the 

conventional SVM, the proposed algorithm is of reduced classifier 

complexity offering lower computational load and execution time. 

For a low C-parameter of 4 (a penalty parameter related to 

complexity), an execution time of 1.6 sec is required for N-SVM to 

effectively mitigate nonlinearities. Compared to conventional 

SVM, the computational load of N-SVM is ~6 times lower.  
 

Index Terms—Coherent detection, nonlinearity mitigation, 

support vector machines, coherent optical OFDM. 

I. INTRODUCTION 

HE data rate in an optical transmission system is currently 

limited by amplified spontaneous emission, which 

determines the minimum power launched into each fiber span, 

and the interplay between chromatic dispersion (CD) and Kerr 

fiber nonlinearity, which limits the maximum launch power [1].  
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To increase the data rate of current-generation coherent 

systems, fiber nonlinearity compensation is required to enable 

higher launch powers, thereby providing enough optical signal-

to-noise ratio to support larger constellation sizes [2]. State-of-

the-art fiber nonlinearity compensators (NLC) include digital 

signal processing (DSP)-based techniques such as digital back-

propagation (DBP) [2], [3], reduced complexity Volterra-based 

nonlinear equalization (NLE) [4], and phase-conjugated twin-

waves [5], which tackle nonlinearities of deterministic nature. 

However, in coherent long-haul optical systems the interaction 

between nonlinear phenomena with random noises such as 

polarization-mode dispersion (PMD) results in stochastic 

nonlinear distortion, which can be partially mitigated using 

machine learning in the digital domain such as support vectors 

machines (SVM) [6]–[10].  

On the other hand, coherent optical orthogonal frequency 

division multiplexing (CO-OFDM) is an excellent candidate for 

long-haul communications because of its high spectral 

efficiency, flexibility, and tolerance to chromatic dispersion 

(CD) and PMD. However, due to its high peak-to-average 

power ratio the deterministic nonlinear cross-talk effects among 

subcarriers such as inter-subcarrier intermixing (ICI) cross-

phase modulation (XPM) and four-wave mixing (FWM) are 

significantly enhanced causing an additional “stochastic-like” 

interference [6], [7]. SVM-based NLEs [6]–[10] have shown 

promising results in CO-OFDM. Nevertheless, since 

optimization usually requires many steps to converge (in the 

order of 30) [7], implementation in real-time processing is 

impractical. 

 

 
Fig. 1. Block diagram of the CO-OFDM receiver equipped with the proposed 

N-SVM-NLE. 
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In this paper, we experimentally demonstrate, for the first 

time, a fast classification SVM-NLE of reduced classifier 

complexity using the Newton-method (N-SVM) [11] in 16 

quadrature amplitude modulated (16-QAM) CO-OFDM at 40 

Gb/s, transmitted at 2000 km of standard single-mode fiber 

(SSMF). It is shown that compared to the benchmark 

deterministic Volterra-based NLE, N-SVM extends the 

optimum launched optical power (LOP) by 2 dB with very low 

DSP computational load and execution time. N-SVM tackles 

ICI nonlinear crosstalk effects more effectively than Volterra-

NLE especially when applied across all subcarriers 

simultaneously, rather than on each subcarrier separately. 

 The paper is organized as follows: Section II analyses the 

principle of the proposed N-SVM-NLE and the benchmark 

Volterra-NLE for 16-QAM CO-OFDM. Section III describes 

the experimental CO-OFDM setup. Section IV presents the 

experimental results of N-SVM-NLE and Volterra-NLE for 

CO-OFDM at 2000 km of transmission, and finally in Section 

V the paper is concluded. 

 

 
 

Fig. 2. Block diagram of proposed N-SVM for the adopted single-
channel/polarization 16-QAM CO-OFDM receiver. 

II. PRINCIPLE OF NEWTON SUPPORT VECTOR MACHINE-NLE  

A. Operation of N-SVM-NLE for 16-QAM CO-OFDM 

In Fig. 1 the block diagram of the CO-OFDM receiver 

equipped with the N-SVM-NLE is depicted, where the received 

optical signal is converted back to an electrical one through a 

homodyne 900 coherent detector. Afterwards, OFDM 

demodulation process follows similarly to [6], where serial-to-

parallel (STP), removal of cyclic prefix (CP) and fast Fourier 

transform (FFT) are processed. After the FFT block the 

proposed N-SVM-NLE takes place for all subcarriers 

simultaneously before decoding and parallel-to-serial (PTS) 

conversion. The proposed N-SVM-NLE implements a fast 

Newton method that suppresses input space features for a 

nonlinear programming formulation of supervised SVM 

classifiers. This stand-alone method can handle classification 

problems in very high dimensional spaces. An implicit 

Lagrangian formulation of an SVM classifier which leads to a 

highly effective iterative scheme [11] is solved in this algorithm 

by a Newton method which handles classification problems in 

just a few steps. In order to handle a 16-QAM constellation 

mapper which has a very large dimensional input, a fast-finite 

Newton method is employed to find the unconstrained unique 

global minimum solution of the implicit Lagrangian associated 

with the classification problem. The solution is obtained by 

solving a system of nonlinear equations, a finite number of 

times. The algorithm implements the Newton method with an 

Armijo step-size [12] and establishes its finite global 

termination to the unique solution. All vectors are column 

vectors unless transposed to a row vector by a 𝑇 superscript. 

The 2-norm of a vector x is denoted by ‖𝑥‖. The matrix A[m×n] 

is related to the A received signal with m complex OFDM 

symbols in the n-dimensional real space 𝑅𝑚 which defines the 

order of modulation format level (i.e. 16 for 16-QAM) as 

depicted in Fig. 2.  

In Fig. 2 where e is the column vector of value 1, while w, b, 

are the normal vector (i.e. weights with w0 being the initialized 

weight) and the scalar of the hyperplane (bias), respectively. To 

control the trade-off between minimizing training errors and 

model complexity we introduce a slack variable z for each 

training symbol and a “penalty parameter” C (which controls 

the trade-off between the slack variable penalty and the 

margin). Similar to [13] the margin maximization formula in 

the SVM is replaced by the least square 2-norm error, which 

brings out an unconstrained optimization being solved by the 

finite “stepless” Newton method. The N-SVM formulation thus 

requires only solutions of nonlinear equations instead of 

quadratic programming and simultaneously maximizes the 

margin and minimizes the error as shown in (1): 
 

min 𝑓(𝑤, 𝑏, 𝑧) = (
1

2
) ‖𝑤‖2 + 𝐶𝑒𝑇𝑧                  (1)  

subject to  𝐷(𝐴𝑤 − 𝑒𝑏) + 𝑧 ≥ 𝑒, 
 

where 𝑧 ∈ 𝑅𝑚 is the non-negative slack vector and C ∈ 𝑅1 is a 

positive constant (C penalty parameter), both used to tune errors 

and margin size, while A is the received signal. To perform 

nonlinear N-SVM, the classification sigmoid function is 

employed. To change from a linear to a non-linear classifier 

however, we substitute a kernel evaluation in (1) instead of the 

original ‘dot product’. Recent developments for massive 

nonlinear SVM algorithms [11] reformulate the classification as 

an unconstrained optimization. By changing the margin 

maximization to the minimization of (
1

2
) ‖𝑤, 𝑏‖2 and adding 

with a least squares 2-norm error, the SVM reformulation with 

nonlinear kernel leads to: 
 

min 𝑓(𝑤, 𝑏, 𝑧) = (
1

2
) ‖𝑤, 𝑏‖2 + (

𝐶

2
) ‖𝑧‖2              (2)                                                   

                  subject to  𝐷(𝐴𝑤 − 𝑒𝑏) + 𝑧 ≥ 𝑒 
 

The formulation of (2) can be rewritten by substituting 𝑧 =
[𝑒 − 𝐷(𝐴𝑤 − 𝑒𝑏)]+ leading to (3): 
 

min 𝑓(𝑤, 𝑏) = (
1

2
) ‖𝑤, 𝑏‖2 + (

𝐶

2
) ‖[𝑒 − 𝐷(𝐴𝑤 − 𝑒𝑏)]+‖2 (3) 

 

where (𝑥)+ replaces negative components of a vector x by zeros 

into the objective function f. By setting [𝑤1𝑤2 … 𝑤𝑛𝑏]𝑇to 𝑢 and 
[𝐴 − 𝑒] to H (which is the Hessian matrix [11]), then the SVM 

formulation of (3) is rewritten by (4): 
 

min 𝑓(𝑤, 𝑏) = (
1

2
) 𝑢𝑇𝑢 + (

𝐶

2
) ‖[𝑒 − 𝐷𝐻𝑢)]+‖2      (4)                               
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B. The “stepless” N-SVMA algorithm 

The adopted N-SVM process is described in Fig. 3 showing the 

finite “stepless” Newton method which solves the strongly 

convex unconstrained minimization problem in (4). In most of 

tested cases [11]–[14] this algorithm has given an optimum 

solution with a few number of iterations varying from 5 to 8. 

 

 
 

Fig. 3. N-SVM algorithm. A=Received signal; D=training data. 

III. BENCHMARK VOLTERRA-NLE FOR 16-QAM CO-OFDM 

The adopted Volterra-NLE is similar to [4], accounting for 

single-band and single-polarization as depicted in Fig. 4. It 

employs the inverse Volterra-series transfer function (IVSTF) 

with up to 3rd order Volterra kernels. It should be noted that 

when higher-order kernels were employed, similar results were 

revealed [15]. IVSTF-NLE offers ∼25% reduced complexity 

compared to full-step/span DBP [4], [9] and inherits some of 

the features of the hybrid time-and-frequency domain 

implementation, such as non-frequency aliasing and simple 

implementation. 

The process of nonlinearity compensation by Volterra-NLE 

is described as follows: The input OFDM signal is first 

converted to frequency domain by FFT. The Volterra-NLE 

compensates CD using a linear compensator. 

 

 

 
Fig. 4. IVSTF-NLE [4] for 16-QAM CO-OFDM. (I)FFT: (inverse) fast-Fourier 

transform; HCD: system chromatic dispersion; NC: nonlinearity compensation; 

k: constant related to the nonlinear distortion and the total power. m: number of 
nonlinearity compensators. 
 

On the other hand, the number of required nonlinear 

compensators depends on the number of homogeneous spans in 

the transmission link. The output of the linear and nonlinear 

compensator is combined and converted back to time-domain 

using the inverse FFT (IFFT). The Volterra-NLE procedure can 

be described from (5) – (9). Since a reduced complexity 3rd order 

IVSTF is considered, the kernels 𝐻1(𝜔, 𝑧) and 𝐻3(𝜔1, 𝜔2, 𝜔 −
𝜔1 + 𝜔2, 𝑧) are given by, 
 

𝐻3(𝜔𝑧) = 𝑒−𝛼𝑧/2𝑒−𝑗𝜔2𝛽2𝑧/2                       (5) 
 

𝐻3(𝜔1, 𝜔2, 𝜔 − 𝜔1 + 𝜔2, 𝑧) = −
𝑗𝛾

4𝜋2
𝐻1(𝜔, 𝑧) 

×
1−𝑒−(𝛼+𝑗𝛽2(𝜔1−𝜔)(𝜔1−𝜔2))𝑧

𝛼+𝑗𝛽2(𝜔1−𝜔)(𝜔1−𝜔2)
.        (6) 

 

where ω is the optical frequency and ω1, ω2 are the dummy 

variables acting as parameters and influence the interactions of 

the lightwaves at different frequency, especially the ICI 

interaction effects. α is the fiber loss, β2 is the 2nd order CD 

parameter and γ accounts for the effect of fiber nonlinearity 

averaging. For an optically amplified Nspan fiber link with Lspan 

being the span length, the corresponding pth inverse is given by 

the nonlinear kernels as, 
 

𝐾1(𝜔) = 𝐻1
−1(𝜔) = 𝑒−𝑗𝜔2𝛽2𝑁𝑠𝑝𝑎𝑛𝐿𝑠𝑝𝑎𝑛/2          (7) 

 

𝐾3(𝜔1, 𝜔2, 𝜔 − 𝜔1 + 𝜔2) = −
𝑗𝛾

4𝜋2
𝐾1(𝜔) 

 

 
Fig. 5. Experimental setup of 40 Gb/s CO-OFDM equipped with either Volterra-NLE or N-SVM-NLE. ECL: external cavity laser, DSP: digital signal 
processing, AWG: arbitrary waveform generator, AOM: acousto-optic modulator, EDFA: Erbium-doped fiber amplifier, GFF: gain flatten filter, LO: local 

oscillator. 
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×
1−𝑒−(𝛼+𝑗𝛽2∆𝜔)𝐿𝑠𝑝𝑎𝑛

𝛼+𝑗𝛽2(𝜔1−𝜔)(𝜔1−𝜔2)
∑ 𝑒−𝑗𝑘𝛽2𝐿𝑠𝑝𝑎𝑛∆𝜔𝑁𝑠𝑝𝑎𝑛

𝑘=1
          (8)  

 

≈ −
𝑗𝛾

4𝜋2 ×
1 − 𝑒−𝛼𝐿𝑠𝑝𝑎𝑛

𝛼
 

×𝐾1(𝜔) ∑ 𝑒−𝑗𝑘𝛽2𝐿𝑠𝑝𝑎𝑛∆𝜔𝑁𝑠𝑝𝑎𝑛

𝑘=1
.         (9) 

 

The corresponding compensation scheme representing Eqs. (7) 

and (9) is applied in Fig. 4. Each nonlinear compensation stage 

is a realization of 

𝐾3(𝜔1, 𝜔2, 𝜔 − 𝜔1 + 𝜔2) ≈ −
𝑗𝛾

4𝜋2
×

1 − 𝑒−𝛼𝐿𝑠𝑝𝑎𝑛

𝛼
 

×𝐾1(𝜔)𝑒−𝑗𝑘𝛽2𝐿𝑠𝑝𝑎𝑛∆𝜔.         (10) 

 

Finally, since single-polarization is considered we have 

 

𝑆𝐾1
(𝜔) ∬ 𝐾3,𝐾1

(𝜔1,
∞

∞

𝜔2, 𝜔 − 𝜔1+𝜔2) 

×𝐴(𝜔1)𝐴∗(𝜔2)×𝐴(𝜔 − 𝜔1+𝜔2)𝑑𝜔1𝑑𝜔2        (11) 

 

where 𝑆𝐾1
(𝜔) is derived by passing the received signal through 

(𝐻𝐶𝐷)(𝐾1,𝐾2), and nonlinearity compensation is performed by 

𝑗𝑘(|. |2)(. ) where we multiply the received signal by a constant 

k related to the nonlinear distortion and the total power. This 

parameter varies for this configuration and is obtained by 

sweeping it to get optimum performance, which is part of the 

calibration of the Volterra-NLE. Finally, the residual CD is 

compensated passing through (𝐻𝐶𝐷)𝑁−(𝐾1,𝐾2).  

IV. EXPERIMENTAL SETUP 

Fig. 5 depicts the experimental setup where an external 

cavity laser (ECL) of 100 kHz linewidth was modulated using 

a dual-parallel Mach-Zehnder modulator (DP-MZM) in IQ 

configuration. The DP-MZM was fed with OFDM I-Q 

components, which was generated offline. The transmission 

path at 1550.2 nm was a recirculating loop consisting of 20×100 

km spans of Sterlite OH-LITE (E) SSMF (attenuation of 18.9-

19.5 dB/100 km) controlled by acousto-optic modulator 

(AOM). The loop switch was located in the mid-stage of the 1st 

Erbium-doped fiber amplifier (EDFA) and a gain-flattening 

filter (GFF) was placed in the mid-stage of the 3rd EDFA. The 

optimum LOP was swept by controlling the output power of the 

EDFAs. At the receiver, the incoming signal was combined 

with another 100 kHz linewidth ECL acting as local oscillator. 

After down-conversion, the baseband signal was sampled using 

a real-time oscilloscope operating at 80 GS/s and processed 

offline in Matlab. 400 OFDM symbols were generated using a 

512-point IFFT in which 210 subcarriers were modulated using 

16-QAM. To eliminate inter-symbol-interference from linear 

effects, a CP of 2 % was included. For fair comparison among 

linear equalization (LE), Volterra-NLE and the proposed N-

SVM-NLE, the net and raw bit-rate were fixed at ~40 Gb/s and 

~46 Gb/s, respectively. The N-SVM training overhead was set 

at 10 % (optimum value for LE) resulting in a training length of 

40 symbols. The offline OFDM demodulator included timing 

synchronization, frequency offset compensation, channel 

estimation and equalization with the assistance of an initial 

training sequence, as well as I-Q imbalance and CD 

compensation using an overlapped frequency domain equalizer 

employing the overlap-and-save method. When N-SVM-NLE 

was performed, the LE was neglected due to N-SVM ability of 

compensating both linear and nonlinear inter-subcarrier 

crosstalk effects. The CO-OFDM transceiver and transmission 

parameters are depicted on Table I. The NLEs performances 

were assessed by Q-factor measurements averaging over 10 

recorded traces (~106 bits), which was estimated from the bit-

error-rate (BER) obtained by error counting after hard-decision 

decoding. The Q-factor is related to BER by Q = 

20log10[√2𝑒𝑟𝑓𝑐−1(2𝐵𝐸𝑅)]. For 16-QAM, a BER of 10-3 

(forward-error-correction-limit, FEC-limit) results in a Q-factor 

of ~9.8 dB. 

Table I. CO-OFDM transceiver and transmission parameters 

Parameter  Value 

Net bit-rate (LE, NLEs) 

Raw bit-rate (LE, NLEs) 

Signal modulation format 

OFDM symbols 

Modulated OFDM subcarriers 
Cyclic prefix (CP) length 

FFT/IFFT size 

N-SVM Training overhead  
 N-SVM Training symbol length 

ECL linewidth  

OH-LITE (E) SSMF attenuation  
Span number 

Span length 

Transmission wavelength   

~40 Gb/s 

~46 Gb/s 

16-QAM 

400 

210 
2 % 

512 

10 % 
40 symbols 

100 KHz 

18.9–19.5 dB/100 km 
20 

100 km 

1550.2 nm 

 

V. RESULTS AND DISCUSSION 

In Fig. 6 the Q-factor against the training overhead of N-

SVM-NLE is depicted for 16-QAM CO-OFDM at 2000 km of 

transmission for a LOP of 2 dBm, which is the optimum LOP 

of LE. It should be noted that changing the training overhead, 

the raw bit-rate was adjusted accordingly. From Fig. 6 it is 

evident that a minimum 10 % of training data is required for N-

SVM-NLE to effectively tackle the OFDM inter-subcarrier 

crosstalk effects (e.g. ICI-XPM/FWM). In this paper, 10 % of 

training data are employed for N-SVM-NLE in all sections.  

 

   
Fig. 6. Q-factor vs. training overhead of N-SVM-NLE for 16-QAM CO-OFDM 

at 2000 km of transmission for a launched optical power (LOP) of 2 dBm, which 
is the optimum LOP of linear equalization (LE). 

 

In Fig. 7, the Q-factor against the LOP is plotted for the 40 

Gb/s CO-OFDM system at 2000 km of transmission for LE, 

Volterra-NLE, and N-SVM-NLE. It is shown that compared to 

Volterra-NLE, the proposed N-SVM-NLE can extend the 
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optimum LOP by 2 dB (FEC-limit at ~9.8 dB), while in 

comparison to LE it can extend the LOP by ~3.5 dB. To 

corroborate the N-SVM-NLE performance enhancement, Fig. 

8 is plotted, showing the received 16-QAM constellations 

diagrams for the three types of equalization and without 

equalization at 6 dBm of LOP. 

 

               
 

Fig. 7. Q-factor vs. LOP for 16-QAM CO-OFDM when performing LE, 
Volterra-NLE, and N-SVM-NLE. 

 

        
                               (a)                                                        (b) 

 

         
                               (c)                                                        (d) 
 

Fig. 8. Received 16-QAM constellation diagrams of CO-OFDM at 2000 km of 
transmission when the LOP is 6 dBm for the following cases: (a) without 

equalization, (b) LE, (c) Volterra-NLE, and (d) N-SVM-NLE. 

 

In Fig. 9, the Q-factor against the C-parameter (the C value 

from (2)) is plotted for the CO-OFDM system under test at a 

LOP of 4 dBm. The C-parameter (also called “penalty 

parameter”) is related to the computational complexity of N-

SVM. It is shown that a C of only 4 is required at an execution 

time of 1.6 sec for stable optimum performance. This time 

required by the training process is considered for a general-

purpose CPU operating at 1.2 GHz. However, this time will be 

drastically reduced in implementations based on Field-

Programmable Gate-Array or Application Specific Integrated 

Circuits. The minimum required C value for N-SVM-NLE is ~6 

times less than the corresponding “penalty parameter” of the 

conventional SVM-NLE reported in [7] for 16-QAM CO-

OFDM. This occurs because i) N-SVM performs fast 

classification tasks that separate cases of different class labels, 

and ii) the conventional SVM performs both classification and 

regression analysis in contrast to N-SVM which only classifies 

the data. It should be noted that a transmission performance 

comparison between the proposed N-SVM and the 

conventional SVM [7] is out of the scope of this paper since fair 

comparison is not feasible.  
 

  
 

Fig. 9. C-parameter/Time vs. Q-factor for 16-QAM CO-OFDM equipped with 

N-SVM-NLE at a LOP of 4 dBm. 

 

In Fig. 10 the impact of N-SVM on the nonlinear ICI 

crosstalk effects is investigated for the adopted CO-OFDM 

system. A comparison is also made with the benchmark 

Volterra-NLE to evaluate the impact of stochastic 

nonlinearities. In Fig. 10, an additional case for exploring the 

nonlinear phenomena in OFDM is proposed, in which the NLEs 

under test are performed for each subcarrier. Although this case 

is unrealistic since it substitutes a separate NLE for each 

subcarrier, it will provide a holistic and deeper understanding 

on the physics underlying nonlinear phenomena in CO-OFDM. 

In Fig. 11, a conceptual diagram is depicted for the application 

of NLE, and NLE per subcarrier (related to Volterra and N-

SVM) on received OFDM signal. N-SVM and Volterra NLEs 

‘per subcarrier’ cases (the dotted lines in Fig. 10) includes 210 

NLEs in contrast to the realistic case where 1 NLE process all 

subcarriers together. In Fig. 10, it is shown that in comparison 

to the ‘per subcarrier’ case, when N-SVM is applied across all 

subcarriers it reduces the fiber nonlinearity penalty by 0.5 dB. 

This occurs because when applying N-SVM on each subcarrier 

separately, ICI nonlinear crosstalk effects are not combated. 

Finally, it is confirmed that CO-OFDM is influenced by 

stochastic nonlinearities which cannot be tackled by the 

deterministic Volterra-NLE.  
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Fig. 10. Q-factor vs. LOP for 16-QAM CO-OFDM equipped with Volterra/N-

SVM being processed across all subcarriers and per subcarrier (dotted lines). 

 

 
 

Fig. 11. Conceptual diagram of application of NLE, and NLE per subcarrier 

(for Volterra and N-SVM) on received OFDM signal. 

 

The results from Fig. 10 indicate that the adopted realistic N-

SVM-NLE which accounts for all subcarriers together, 

provides effective and fast compensation of inter-subcarrier 

nonlinear crosstalk effects in CO-OFDM. 

VI. CONCLUSION 

A novel fast N-SVM-NLE of reduced classifier complexity 

was experimentally demonstrated in 40 Gb/s 16-QAM CO-

OFDM at 2000 km of SSMF. In comparison to Volterra-NLE, 

the proposed N-SVM extended the optimum LOP by 2 dB with 

very low computational load and execution time. N-SVM 

tackled inter-subcarrier nonlinear crosstalk effects more 

effectively than Volterra-NLE especially when applied across 

all subcarriers simultaneously. 
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