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Abstract: The availability of coarse-resolution cost-effective Optical Spectrum Analyzers 
(OSA) allows its widespread deployment in operators’ networks. In this paper, several 
machine learning approaches for failure identification and localization that take advantage of 
OSAs are presented. 
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1. Introduction 
Failure identification and localization can reduce failure repair times greatly. Failure localization techniques 

have been proposed mainly for hard failures, while significant work is still required for soft failure detection, 
identification, and localization. Note that some soft failures could affect signal QoT and eventually evolve to 
hard failures. In a recent work [1], the authors proposed monitoring the performance of lightpaths at the 
transponders side to verify their proper operation, as well as to detect BER degradations thus, anticipating 
connection disruptions. The authors analyzed several soft failure causes affecting signal QoT, such as laser drift, 
filter shift, and tight filtering, and propose algorithms to detect and identify the most probable failure. However, 
monitoring the signal at the egress node does not allow localizing failures and therefore, monitoring techniques 
to analyze and evaluate QoT in-line are required. In this regard, the availability of a new generation of cost-
effective OSAs with sub-GHz resolution, integratable in the optical nodes [2], allows real-time monitoring of 
the optical spectrum of the lightpaths and computing their corresponding OSNR. Note that, when a signal is 
properly configured, its central frequency should be around the center of the assigned spectrum slot to avoid 
filtering effects, and it should be symmetrical with respect to its central frequency. Therefore, optical spectrum 
features can be exploited by machine learning-based algorithms to detect degradations and identify failures.  

In this paper, we analyze DP-QPSK and 16QAM modulated signals and, from [4], study approaches to detect 
filtering related failures, i.e., Filter Shift and Tight Filtering; the optical spectrum would be asymmetrical in the 
case of filter shift, and its edges get noticeably rounded in the case of tight filtering. These changes allow 
distinguishing optical spectra suffering from such failures from properly configured ones. However, some of 
these effects, in particular for the case of tight filtering, can be observed when a properly configured signal 
passes through several filters (filter cascading). Therefore, it is of paramount importance to devise solutions to 
cope with this issue preventing the misclassification of a properly configured signal as a failed one. We study 
several alternatives solving this issue, which can be used individually or combined. Ultimately, the optical 
spectrum analysis can be used by sophisticated algorithms able to identify and localize failures. These 
algorithms can be deployed in the network controller, as well as in nodes’ agents, close to the observation 
points, to reduce the amount of monitoring data to be conveyed to the control/management plane [3]. 
2. Failure detection and identification with OSAs 

Let us firstly overview our proposed soft failure detection and identification process that utilizes the optical 
spectrums captured by OSAs deployed in the intermediate nodes [4]. The process involves both, modules 
running in node agents and modules running in the controller; this follows the architecture proposed in [3]. 

Fig. 1a shows an example of optical spectrum acquired by an OSA with 625 MHz resolution. In general, 
QPSK and 16QAM optical signals present, once filtered, a flat spectral region around the central frequency, 
sharp edges, and a round region between the edges and the central one. Running in node agents, a module 
named as Feature Extraction (FeX) receives the C-band optical spectrum acquired by the local OSA and extracts 
the data for the portion of the spectrum allocated to the lightpath under study; data consists of an ordered list of 
frequency-power (<f, p>) pairs. After equalizing power, so the maximum power to be 0 dBm, the derivative of 
the power with respect to the frequency is computed; Fig. 1b illustrates the derivative of the example optical 
signal, where sharp convexity can be observed close to the edges. Next, the FeX module characterizes the mean 
(μ) and the standard deviation (σ) of the power around the central frequency (fc±Δf), as well as a set of primary 
features computed as cut-off points of the signal with the following power levels: i) equalized noise level, 
denoted as sig (e.g., -60dB + equalization level); ii) edges of the signal computed using the derivative, denoted 
as ∂; iii) a family of power levels computed w.r.t. μ-kσ, denoted as kσ; and iv) a family of power levels 
computed with respect to μ-mdB, denoted as -mdB. Each of these power levels generates a couple of cut-off  
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Fig. 1. Relevant points of a QPSK modulated signal 

points denoted as f1(·) and f2(·). In addition, the assigned 
frequency slot is denoted as f1slot, f2slot. Other features are 
computed as linear combinations of the relevant point focus on 
characterizing a given optical signal (see embedded equations in 
Fig. 1a); they include: bandwidth (bw), central frequency (fc), 
and symmetry (sym) with respect to a reference (frequency slot or 
derivatives). Some features are more appropriate for filter related 
failure identification, such as bandwidth and symmetry at -3dB 
and -6dB, whereas other features, such as the central frequency, 
are more appropriate for laser drift identification. 

After features have been extracted from the optical signal, a 
classification module named as Signal Spectrum Verification 
(SSV) running also in the node agents analyzes those features to 
detect a misconfiguration. The SSV module was implemented as 
a multiclass classifier in the form of a decision tree that produces 
a diagnosis which consists of i) a predicted class among the  
 

following options: ‘Normal’, ‘LaserDrift’, ‘FilterFailure’; and ii) a subset of relevant signal points for the 
predicted class. In the case that a filter failure is detected, another classifier is used to predict whether the failure 
is due to FilterShift or TightFiltering. The decision-making units of this secondary classifier are realized as 
support vector machine (SVM) binary classifiers exploiting ith order polynomials as kernel function [5]. 

Finally, the FailurE causE Localization for optIcal NetworkinG (FEELING) algorithm running in the network 
controller commands the classification modules. One of the key challenges in the identification of filter related 
failures is the misclassification of a normal signal that has passed through several filters (i.e., affected by filter 
cascading) as a signal which has suffered from filter failures. Therefore, to improve failure identification 
accuracy, the FEELING algorithm must be able to distinguish between actual failures and normal effects arising 
from filter cascading. In the next section, we propose three alternatives to prevent such misclassification. 
Furthermore, since filter failures have impact on the OSNR, we take advantage of OSNR computation in 
intermediate nodes from the optical acquired signal to complement and enhance FEELING failure localization. 
3. Approaches for optical spectrum analysis and signal classification 

When a normal signal passes through several filters, it 
becomes narrower; the higher the number of the filters, 
the narrower the signal. As a result of filter cascading, 
signal features change in a similar way it happens when 
a tight filtering failure takes place. 

The most straightforward solution to circumvent this 
issue is to correct feature values of a signal which is 
acquired after passing N filters, by adding/subtracting 
the differences w.r.t. feature values of the signal 
acquired in the ingress node (just after the transponder); 
we call such process as correction mask. This approach 
is conceptually shown in Fig. 2a. The correction mask 
can be computed a priori, assuming the changes a 
normal signal experiences while passing through 
different number of WSSs. Considering this approach, a 
single classifier can be trained based on the observations  
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Fig. 2. Approaches to solve the filter cascading problem: a) 
correction mask, b) multi-classifier, and c) residual computation. 

of the signal in the ingress node, where the impact of filter cascading is negligible, and it can be used at every 
intermediate node. A different approach that does not need correcting signal features is shown in Fig. 2b; it uses 
differentiated classifiers trained based on the observations collected from signals after passing through a specific 
number of WSSs. The complete set of classifiers needs to be available in every intermediate node and the 
appropriate one is used when a new signal spectrum is received. In the previous approaches, we aimed at 
avoiding the filter cascading problem either by correcting the computed features or by exploiting multiple 
classifiers on unaltered signal features. An alternative approach is to compare the received signal against the 
expected signal after a given number of filters. The expected signal at the ingress node can be obtained 
theoretically, whereas expected signals after a number of WSSs can be obtained assuming a certain transfer 
function for the filters, e.g., 2nd order Gaussian. In this approach, a classifier needs to be trained to work on the 
residuals resulting from computing the difference between acquired and expected signal spectra. 
4. Results for the three approaches 

In this section, we discuss a set of results showing how different approaches cope with the filter cascading 
problem. To this end, we configured a VPIPhotonics scenario where we emulate independently a 100 Gb/s DP- 
QPSK and a 200 GB/s 16QAM modulated signals. In the transmitter side, the optical signal is generated and it  
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Fig. 3. Results for the considered approaches to solve the filter cascading problem. 

passes through several fiber spans. 
After each span, an optical 
amplifier compensates for the 
accumulated attenuation of the 
fiber. Every optical node is 
considered to have two WSSs, 
where each one of them is modeled 
as a single optical filter with a 2nd 
order Gaussian transfer function; 
filters bandwidth is set to 37.5 GHz, 
leaving 7.5 GHz as a guard band for 
the lightpath. Finally, the optical 
signal ends in a coherent receiver 
that compensates for the 
impairments introduced throughout 
the transmission. In addition, 625 
MHz OSAs are placed after every 
optical node to analyze the optical 
spectrum. Although in the 
following we present the obtained 
results for the DP-QPSK signal, 
they are valid for the 16QAM 
signal, since their spectra look 
almost identical after normalization. 

Fig. 3 presents the results. The 
figure is divided into rows with the 
acquired optical spectrum on the 
first row and with the results for the  
 

three different approaches defined in the previous section. Regarding the acquired signal spectra, three graphs 
present a normal signal, another affected by 8 GHz filter shift, and a third affected by 23 GHz tight filtering. 
Each graph plots three spectra for the signal acquired in the ingress, after 4 WSSs and after 8 WSSs. 

For the first approach (i.e., Correction Masks), the key signal features need to be corrected to compensate 
filter cascading. Fig. 3 shows the evolution of three key features (i.e., bw(-3dB), bw(-6dB), sym(-3dB)-∂) used for the 
classification purposes; the features should be corrected as shown by the red arrows in the figures. After such 
correction is applied, the single classifier trained based on the observations collected after the ingress node can 
perfectly distinguish filter related failures after any number of WSSs (up to 10 WSSs have been tested). For the 
multi-classifier approach, Fig. 3 plots bw(-6dB) and sym(-3dB)-∂ against bw(-3dB) and sym(-3dB)-∂; the plots allow SVMs 
to differentiate among Normal, FilterShift, and TightFiltering classes. Although classifiers provide accuracy 
higher than 95%, as the number of WSSs increases more complex SVM models are required. For instance, 
while at the ingress node a linear kernel and three support vectors are enough to achieve 95% accuracy, the 
classifier responsible for the classification after 8 WSSs, requires a 2nd order polynomial kernel and 6 support 
vectors to achieve 95% accuracy. Finally, for the residual computation approach, Fig. 3 presents acquired and 
expected signals after 4 WSSs for the filter shift and filter tightening failures, as well as the residuals calculated 
by subtracting actual and expected signals. As shown, the residuals for the filter shift failure look completely 
different from for the tight filtering problem; these shapes change also based on the magnitude of the failures.  
 

Therefore, a classifier can be developed fed by features computed on the 
residuals. 

Even though these approaches enhance the accuracy of FEELING to 
cope with the filter cascading problem, the captured OSNR values can 
be additionally used for failure localization. Fig. 4 shows the measured 
OSNR evolution for three signals: normal signal, a signal affected by 
filter shift after node 2 (N2), and a signal affected by filter shift after N4. 
While the normal signal follows a smooth trend from N1 to N4, the 
slope of the trend of the signal affected by a filter shift changes after a 
particular node, which reveals the location of the failure. 

23,0

23,5

24,0

24,5

25,0

N1 N2 N3 N4

 Expected Values
 8 GHz FilterShift at N2
 8 GHz FilterShift at N4

O
SN

R 
(d

B)

 
Fig. 4. OSNR degradation due to failures 
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