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1. Introduction 

The design of optical networks always relies on a software tool to predict the QoT for all traffic demands, in order to 

ensure that the quality of a signal carrying a light path is above a predefined threshold. Such a QoT tool typically 

includes a QoT physical model, and input parameters describing network elements. To ensure that all traffic 

demands in an optical network fulfill their target capacities, network designers add significant (up to several dBs) 

pre-defined “design margins” to the values predicted by the QoT tool [1-2]. A significant amount of margins - 

design margins - are added to compensate for prediction errors of the QoT tool, resulting in network over-

dimensioning. Design margins compensate for errors both from the QoT physical model itself and from the 

uncertainties on the QoT tool input parameters. The latter comes from imperfect knowledge of the actual properties 

of deployed network elements. In a deployed network, optical performance monitoring of some of the most sensitive 

optical layer parameters can reduce parameters uncertainties.  

Correlating information collected from a set of already established demands to predict the QoT of new demands 

has been initiated for the worst case with a full spectrum [3] or for a realistic wavelength allocation with nonlinear 

interactions between demands [4]. However, the reduction of the uncertainties on the QoT input parameters was not 

treated yet. Uncertainties reduction has been studied in [5] for a 6-nodes network experimental test-bed. However, it 

assumes that the error on the Signal-to-Noise ratio (SNR) estimation for a complete light path is distributed to the 

links according to their relative weigh comparing to the total SNR of the light path. We propose a different method 

to reduce design margins stemming from QoT parameters uncertainties by leveraging SNR measurements from 

coherent receivers deployed to receive previously established light paths. After describing our solution, we 

benchmark it on the European backbone network [6], for which we reduce design margins for new demands.   

 
 

Fig. 1 Illustration of the complete network design cycle.  

Cycle consists of three phases: deployment, training and prediction. 

 
Fig. 2 Block diagram of the learning algorithm. Xe is the 

estimated data (by monitoring) and C is the cost function. 

 

 

2.  Learning process 

We represent in Fig. 1 the complete cycle of the network design, including greenfield (initial deployment, left) and 

brownfield (upgrades, right). Cycle consists of three phases: deployment, training and prediction. In greenfield 

design margins m (typically 2 dB) are allocated due to imperfect knowledge of the input parameters of the QoT tool. 

After light paths for initial demands are established (Fig. 1 – Deployment phase), we collect all the monitored data 

issued from direct field measurements. This data is sent to a centralized Software Defined Network (SDN) controller 

data base, which also contains a QoT tool. All other network information, not measured but given by the equipment 

specifications, can also be added to this database. Like the measured data, these specification values suffer from 

uncertainties and a fortiori differ from the actual values.  

This database will be used to train a learning process and after convergence, it will lead to a better knowledge of 

all uncertain input parameters (Fig. 1 – Training phase) and an improvement in the QoT prediction for all new 

demands (Fig. 1 – Prediction phase). Fig. 2 represents the block diagram of this learning algorithm based on a 
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gradient descent algorithm. We start by using all the estimated input parameters of the QoT tool contained in the 

SDN database (Xe). An estimated SNR (SNRe) can be then evaluated using the QoT tool. Since SNRe is obviously 

different from the measured one (SNRm), we can build a cost function C = (SNRe-SNRm)2. This cost function is 

minimized by iteratively modifying all the input parameters of the QoT tool simultaneously. Once C converges 

towards a value smaller than a predefined threshold , the QoT tool can be used with the new values of the input 

parameters yielding reduced design margins (m’ < m) for new traffic demands (Fig. 1 – Prediction phase). If we 

update the SDN database with information coming from the new demand(s) the QoT predictor may be iteratively 

refined through re-training as shown in Fig. 1.  

 

3.  Simulation setup and assumptions 

We consider the European backbone network consisting of 28 nodes, 41 uncompensated links and 258 standard 

SMF fibers [6]. Already established demands are carried by 9 wavelengths with 28Gbaud PDM-QPSK modulation. 

Channel spacing is uniformly set at 50 GHz. All nonlinear interactions between wavelengths of a same demand are 

considered (self/cross -phase modulation and four wave mixing) but the interaction between two groups of 9 

channels issued from two different demands in shared links are not considered. We also assume that all demands are 

carried transparently; optimization of regenerator position is out of the scope of this article. Each demand follows 

the shortest path. We use the model from [7], according to which the combined effect of chromatic dispersion and 

Kerr nonlinearity generates a nonlinear distortion after the fiber span k leading to a nonlinear distortion-to-signal 

ratio defined by 
k

N
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
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21 , where Pk is the total input optical power and k is the normalized nonlinear 

noise variance for span k numerically computed for 9 wavelengths as in [7]. Assuming independent probability 

distributions, we add the nonlinear noise to the amplifier linear noise. We finally write the SNR accounting for 

system performance as follows: 

 
 

(1) 
 

 is the unitary fiber loss and L is the common fiber span length, both known without any uncertainties. Bref is the 

reference spectral bandwidth, h is the Planck constant and  the optical frequency. To include the nonlinear 

interactions between demands, a model giving the nonlinear SNR for any wavelength allocation would be needed 

and, it is under construction. We focus on the reduction of the uncertainties on powers (P) and noise figures (NF). 

The noise figure is estimated from the amplifiers specifications (NFe). We assume that span input powers are 

identical for all wavelengths and for all demands for each of the 258 fiber spans of the network. This assumption is 

based on two points: first, the power is not adapted to the reach of the demand and, secondly, amplifier gains are 

perfectly flat. Non-zero excursion of power levels across the spectrum multiplex is out the scope of this proof of 

concept and will be the subject of a future work. At the output of each line amplifier, we monitor the total power and 

form a set of 258 estimated values {Pe}. From this data, an estimated SNR (SNRe) is evaluated with Eq. (1). The last 

monitored term is the SNR at the receiver side. In a real network, this SNR would be either deduced from the Rx 

signal constellation or from a bit-error-rate measurement (SNRm). In this numerical study, due to lack of network-

wide experimental data, we use also Eq. (1) with an arbitrary set of powers {P} and noise figures {NF} to emulate 

the actual values. In other words, we assume that our QoT model itself is perfect and we focus on decreasing the 

input parameters uncertainties. The uncertainty of the model, which is out of the scope of this article, will be 

included in a future study. The cost function C, defined in Fig. 2, is then computed and minimized by the gradient 

descent algorithm. 

 

4.  Results 

The learning process previously presented is tested for various configurations of input parameters. The actual power 

set {P} has a normal distribution around 1 dBm with a standard deviation of 0.5 dBm. The actual noise figure set 

{NF} has a uniform distribution with boundaries 5 dB and 7 dB. To construct the set of estimated powers {Pe}, we 

add to actual powers {P} a random contribution to emulate the power measurement uncertainties. This random 

contribution comes from two sources of uncertainty: a systemic error caused by a not perfect equipment calibration 

(P = [-2, -1, 0, 1, 2] dB) and a statistical error due to the measurement itself (p = 1 dB). The estimated power can 

be different from one span to another, due to amplifier gain fluctuation and/or due to a difference of span loss. The 
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estimated noise figures NFe were constant (5, 6 or 7 dB) and we tested 5 different number of demands (Nd) in the 

training set (Nd = 50, 100, 200, 400 or 600). 

In Fig. 3, we plot the error probability on the SNR prediction (SNRe-SNRm) with learning (solid line) and 

without learning (dashed line) for all demands that are not in the training set. We choose one configuration of input 

parameters: P = 0 dB, NFe = 6 dB, Nd = 600. The benefit of the learning process is rather visible since the width of 

the SNR error distribution almost vanishes after convergence of the learning process: the distribution is almost 

reduced to a Dirac function around 0 dB, leading to a reduced design margins (m’ < m). To quantify more precisely 

this SNR error reduction, we plot in a subset the error histogram obtained with learning with a x100 zoom. The SNR 

error reaches  ±1 dB without learning and is reduced to ±0.01 dB thanks to the learning process It shows well that the 

QoT model  is much more accurate for new demands thanks to the learning process, suppressing almost all the input 

parameters uncertainties.  

 

 
 

Fig. 3 Probability the SNR prediction 

error (SNRe-SNRm) with learning (solid 
line) and without learning (dashed line). 

P=0 dB, NFe = 6 dB and Nd = 600. The 

inset is a x100 zoom on the SNR error 
scale for the histogram obtained with 

learning. 

 
 

Fig. 4 Range of the SNR prediction error (mean ± 3) for one demand among all the remaining 

demands as a function of the number of demands Nd in the training set and for 5 values of 
systematic power shift: (a) to (e). The three error bars for each size of the training set correspond to 

various estimated noise figure NFe: 5, 6 and 7 dB, respectively.  Zero demand means that there is no 

training. 

 

In Fig. 4, we further show all tested configurations. Each sub-figure corresponds to one value of systematic 

power shift P. The vertical bar represents the 3-spread of the SNR error prediction for one demand among all the 

remaining demands. The x-axis represents the varying number of demands in the training set. Zero demand means 

that there is no training. For each number of demands, we have a group of three vertical bars, one for each NFe 

value. Without the learning process, the SNR error varies between +3.7 dB and -1.8 dB. Thanks to learning, the 

SNR error spread decreases progressively with the number of demands and finally reduces to ± 0.1 dB with 600 

demands in the training set. This evolution of the SNR error is almost identical whatever the initial error on the 

measured powers and the estimated noise figure NFe. For all tested configurations, the average SNR error converges 

to almost 0dB. Moreover, a learning process trained with 200 demands is enough to provide a SNR prediction with ± 

0.3 dB accuracy, which corresponds to one third of the total number of possible connections. 

5.  Conclusion  

By feeding a learning process based on a gradient-descent algorithm with a set measured/monitored data (SNR, 

powers), we have reduced the uncertainties of two input parameters of the QoT tool: total output powers and noise 

figure of all the network amplifiers assuming the same power levels for all channels. Design margins have been then 

reduced for new demands in the brownfield scenario of a European backbone network whatever the amount of 

uncertainties of the initial parameters. The over-provisioning can be strongly reduced which cut down the cost of the 

network. This work was partly supported by H2020 EU project ORCHESTRA under grant agreement n°645360. 
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