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Abstract—Machine learning techniques relevant for nonlinear-
ity mitigation, carrier recovery, and nanoscale device characteri-
zation are reviewed and employed. Markov Chain Monte Carlo in
combination with Bayesian filtering is employed within the non-
linear state-space framework and demonstrated for parameter es-
timation. It is shown that the time-varying effects of cross-phase
modulation (XPM) induced polarization scattering and phase noise
can be formulated within the nonlinear state-space model (SSM).
This allows for tracking and compensation of the XPM induced
impairments by employing approximate stochastic filtering meth-
ods such as extended Kalman or particle filtering. The achievable
gains are dependent on the autocorrelation (AC) function prop-
erties of the impairments under consideration which is strongly
dependent on the transmissions scenario. The gain of the compen-
sation method are therefore investigated by varying the parameters
of the AC function describing XPM-induced polarization scattering
and phase noise. It is shown that an increase in the nonlinear toler-
ance of more than 2 dB is achievable for 32 Gbaud QPSK and 16-
quadratic-amplitude modulation (QAM). It is also reviewed how
laser rate equations can be formulated within the nonlinear state-
space framework which allows for tracking of nonLorentzian laser
phase noise lineshapes. It is experimentally demonstrated for 28
Gbaud 16-QAM signals that if the laser phase noise shape strongly
deviates from the Lorentzian, phase noise tracking algorithms em-
ploying rate equation-based SSM result in a significant perfor-
mance improvement (>8 dB) compared to traditional approaches
using digital phase-locked loop. Finally, Gaussian mixture model
is reviewed and employed for nonlinear phase noise compensation
and characterization of nanoscale devices structure variations.

Index Terms—Bayesian filtering, expectation maximization
(EM), machine learning, Monte Carlo methods, optical commu-
nication.

I. INTRODUCTION

H IGH baud rate (>30 Gbaud) optical communication sys-
tems employing modulation formats up to 64-quadratic-

amplitude modulation (QAM) are soon to become commercially
available [1]. In the research community, there is currently focus
on increasing the signal baud rate beyond 100 Gbaud [2]–[4] and
also realizing single-carrier Tb/s systems [5]. Even though there
has been a lot of progress in the field lately, there are still many
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challenges remaining to be solved in terms of fibre nonlinearity
compensation (the maximum amount of information transmitted
over a specific distance is limited by the optical fibre nonlinear-
ity [6]), phase noise compensation (integration of semiconductor
laser on a transceiver chip imposes certain restrictions on the
achievable laser noise properties [7]) and equalization enhanced
phase noise for high-baud rate systems [3].

To be more specific, next generation of signal processing al-
gorithms should be able to cope with: finite memory induced by
the interaction between accumulated chromatic dispersion, Kerr
nonlinearity and noise [8], [9], system identification of various
channel impairments and components [10], phase tracking for
non-Lorentzian lineshape optical sources [7] and modulation for
nonlinear communication channels [11]– [13]. This requires a
departure from the signal processing methods designed for linear
channel and exploration of non-linear statistical signal process-
ing methods offered by the machine learning community [14],
[15]. In this paper, we present a nonlinear state-space framework
in conjunction with sequential Monte Carlo methods that can be
used for system identification and tracking of time-varying pa-
rameters. The framework allows for the dynamics of the optical
channel and components to be included in the formulation of
the signal processing algorithms. We demonstrate the benefits
of the proposed approach for XPM induced polarization scatter-
ing and phase noise, carrier synchronization for non-Lorentzian
lineshape optical sources. Additionally, we present Gaussian
mixture model (GMM) and its application in optimum symbol
detection in the presence of nonlinear phase noise and also char-
acterization of silicon photonics process variations. The paper is
an extension of [10] with a significant contribution to the theo-
retical part and addition of new results with respect to mitigation
of XPM induced impairments and density estimations.

The remainder of this paper is organized as follows. In Sec-
tion II, a method for system identification of nonlinear state-
space model (SSM) is presented. This is achieved by employing
Metropolis-Hastings (MH) algorithm in conjunction with the
state estimation. The pseudo-code for the system identification
method is also presented. In Section III, it is shown that the
effects of XPM induced polarization scattering and phase noise
can be included in the state-space framework by modeling it
as an autoregressive (AR) processes. The extended Kalman fil-
ter (EKF) is formulated for the joint tracking of cross-phase
modulation (XPM) induced polarization scattering and phase
noise. The performance of the EKF is compared with the results
obtained by particle filtering which is a more general method
of dealing with nonlinear SSM. Next, in Section IV, it is re-
viewed how laser dynamics expressed by rate equations can be
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included into the SSM and allow for tracking of non-Lorentzian
lineshapes. The improvement in the system performance, when
using laser rate equation based carrier recovery, is quantified
based on the experimental results. Finally, in Section V, ba-
sic concepts behind the GMM are reviewed. The application
of GMM in combination of expectation maximization (EM)
algorithm is demonstrated to compute the optimum decision
boundaries for constellations impaired by the nonlinear phase
noise. It is also briefly explained how GMM can be applied to
characterize probability density function associated with struc-
ture variation of photonic integrated circuits. The conclusions
are presented in Section VI.

II. BAYESIAN FILTERING AND PARAMETER ESTIMATION

The probabilistic SSM offers a general and very powerful tool
to learn, model, and analyze optical communication systems and
components. The probabilistic SSM specified at a discrete time
instant k ∈ N is expressed as:

θ ∼ p(θ) (1)

xk ∼ p(xk |xk−1 ,θ) (2)

yk ∼ p(yk |xk ,θ) (3)

where k is the discrete time index. The state xk ∈ Rn , where n
is the dimension of the state vector, can represent various dy-
namical parameters of the system such as: the transmitted data
sequence, amplitude noise, phase noise, equalization enhanced
phase noise, polarization mode dispersion, XPM induced ef-
fects, nonlinear phase noise and carrier density. The variable
yk ∈ Rm , represents observable variables which are the sam-
ples after the analog-to-digital converter in coherent optical sys-
tems, and m is the dimension of the measurement vector. The
stochastic dynamics of the state vector xk are characterized by
p(xk |xk−1), which describes the transition probability associ-
ated with the uncertainties of the state vector. The measured data
is characterized by the conditional probability density function
p(yk |xk ) and is determined by the measurements noise (noise
generated due to electrical and optical amplification). The prob-
ability density functions p(xk |xk−1) and p(yk |xk ) are param-
eterized by mean vector, μ, covariance matrix, Σ, or in some
cases hyper-parameters Υ. Those parameters may not be known,
and the coefficients of μ, Σ and Υ are then grouped together
into a vector of unknown parameters θ ∈ Rd , where d is the
dimension of the vector. The parameters of the vector θ are as-
sumed to be unobserved random variables with prior probability
density function p(θ).

The central idea in Bayesian filtering is to compute the pos-
terior distribution of x1:K and θ, given the measurements up
to time step k = K, i.e., y1:K . The posterior distribution can
then be either directly or indirectly used to estimate the mean
of the state vector and parameters. The posterior distribution is
expressed using Baye’s rule:

p(x1:K ,θ|y1:K ) =
p(y1:K |x1:K ,θ)p(x1:K |θ)p(θ)

p(y1:K )
. (4)

It is challenging to compute the joint posterior distribution
of the states and the parameters. It is more computationally ef-
fective if the problem is separated in computing the posterior of
the parameters and states separately. The posterior distribution
of the parameters θ is obtained by integrating out the states:

p(θ|y1:K ) =
∫

p(x1:k ,θ|y1:K )dx1:K =
p(y1:K |θ)p(θ)

p(y1:K )
.

(5)
The expression p(y1:K ) does not depend on the parameter

vector θ and it only acts as a normalization constant. There-
fore, it can be omitted. The expression for the likelihood of the
observed data conditioned on the parameters, p(y1:K |θ), is not
suitable for recursive computational framework and therefore
needs to be factorized:

p(y1:K |θ) =
K∏

k=1

p(yk |y1:k−1 ,θ) (6)

where p(yk |y:k−1 ,θ) is computed as [16]:

p(yk |y1:k−1 ,θ) =
∫

p(yk |xk ,θ)p(xk |yk−1 ,θ)dxk . (7)

The parameter vector θ is then obtained by maximizing the
posterior distribution p(θ|y1:K ):

θMAP
est = argmax

θ
{p(θ|y1:K )}. (8)

The maximum likelihood (ML) of the parameter vector θ is
obtained by assuming a uniform prior for p(θ) and performing
the following minimization:

θML
est = argmin

θ
{− log p(y1:K |θ)}. (9)

Equation (7) is central as it connects parameter estimation
and state estimation through p(yk |y1:k ,θ) and p(xk |yk−1 ,θ),
respectively. This allows for joint parameter and state estima-
tion. The expression for p(yk |xk ,θ) is given by the SSM, equa-
tion (3), and the expression for p(xk |yk−1 ,θ) is provided by
the Kalman or particle filter. For the linear SSM with Gaus-
sian densities, an analytical expression for p(yk |y1:k−1 ,θ) is
obtained [16]:

p(yk |y1:k−1 ,θ) = N(yk |
μ︷ ︸︸ ︷

Hmp
k ,

Σ︷ ︸︸ ︷
HPp

kH
T + Σk ) (10)

where N(·) denotes Gaussian distribution, mp
k and Pp

k are pre-
dicted state mean value and covariance, respectively, both avail-
able from Kalman filtering equations [15]. The measurement
model matrix H is available directly from the specified SSM
(3). Σk is the measurement noise covariance matrix associ-
ated with p(yk |xk ). For a more a general case of a SSM em-
ploying particle filtering for state estimation, the expression for
p(yk |y1:k−1 ,θ) becomes:

p(yk |y1:k−1 ,θ) =
N∑

i=1

wi
k−1p(yk |x(i)

k ,θ) (11)

where N is the total number of the particles and wi
k−1 are

weights from the the previous iteration k − 1. Pseudo code for
computing p(yk |y1:k−1 ,θ) is specified by Algorithm 1:
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Algorithm 1 Calculate p(y1:K |θ)
specify: θ = [θ1 , . . . , θM ]
for m = 1:M do

θ = θm

for k=1:K do
run state estimation via Kalman or particle filter
compute: (10) or (11)
compute: Lm (θ) = Lm (θ) − log p(yk |yk−1 , θ)

end for
end for
L(θ) = [L1 , . . . , LM ]
p(y1:K |θ) = exp{−L(θ)}

From the practical point of view, computation of
p(yk |y1:k−1 ,θ) or the corresponding log-likelihood function
L(θ) =

∑K
k=1 − log p(yk |y1:k−1 ,θ) is very useful as it pro-

vides the knowledge about the actual shape of the function that
needs to be maximized or minimized. The algorithm 1 is a brute
force approach of estimating parameters as p(y1:K |θ) is swept
for all possible guesses of θ and then the parameters θm that
maximize p(y1:K |θ) are chosen. The method works well, in
terms of computational efficiency, if very few parameters are
to be estimated. For more complex cases, Monte Carlo Markov
Chain (MCMC) methods need to be employed. In the next sec-
tion, the MCMC method for parameter estimation is reviewed.
There are also many other approaches for parameter estimation
within the SSM such as prediction error method employing least
squares methods, dual Kalman filtering and data augmentation
based on the EM algorithm [17].

A. Monte Carlo Markov Chain

In general, MCMC refers to a technique of generating sam-
ples, yk , from a probability distribution, p(y), based on con-
structing a Markov chain, such that the generated samples, yk ,
have the desired distribution as the target distribution p(y). For
the considered case in this paper, this implies that we would like
to draw samples, θ from the posterior distribution p(θ|y1:K ) and
subsequently estimate the parameters by computing the mean:

E[θ|y1:K ] =
∫

θp(θ|y1:K )dθ. (12)

The integration in equation (12) is in most cases of interest
intractable, however, if we can draw independent samples, θm

from the distribution p(θ|y1:K ), the integration in (12) can be
approximated:

E[θ|y1:K ] ≈ 1
M

M∑
m=1

θm . (13)

There is a large number of iterative methods on how to draw
samples from a distribution, and an interested reader is referred
to [14]. In this paper, we will focus on the MH algorithm.
The MH algorithm is the most common type of MCMC algo-
rithm and also most common types of MCMC algorithms can
be interpreted as a special case of the MH algorithm. For a

Algorithm 2 MH for parameter estimation

specify proposal distribution q(θ): N(θ|μ,Σ) or
U(θ|a,b)
specify prior distribution p(θ)
for m = 1:M do

for p = 1:P do
sample: θm ∼ q(θm |θm−1)
for k = 1:K do

run state estimation via Kalman or particle filter
compute: (10) or (11)
compute: Lm = Lm − log p(yk |yk−1 , θ)

end for
evaluate α = exp[Lm + log p(θm ) + log q
(θm−1 |θm ) − Lm−1 − log p(θm−1)−
log q(θm |θm−1)]
sample: u ∼ U(u|0, 1)
if u < min{0, α} then

θm = θm

else
θm = θm−1

end if
end for

end for
evaluate autocorrelation, R(n), of generated samples θm

evaluate mean: E[θ] = mean θ(Minit : M)

tutorial on the MH algorithm see [18]. The main idea behind
the MH algorithm is since it is not possible to draw samples
directly from the distribution p(θ|y1:K ), a proposal distribu-
tion, q(θ), from which samples θm can be more easily drawn is
needed. Once the samples, θm , have been drawn, p(θm |y1:K )
is evaluated and in course terms related to p(θm−1 |y1:K ),
i.e., p(θm |y1:K )/p(θm−1 |y1:K ) from the iteration m − 1. The
new sample, θm is accepted with probability expressed by A:

A = min
{

p(y1:K |θm )p(θm )q(θm−1 |θm )
p(y1:K |θm−1)p(θm−1)q(θm |θm−1)

, 1
}

. (14)

Algorithm 2 shows the basic pseudo-code for MH algorithm
for joint parameter and state estimation.

In Algorithm 2, M is the total number of samples, (equivalent
to a number of iterations), that we would like to draw and
use for parameter estimation. The variable P denotes the lag
parameter and helps the chain improve the acceptance rate. In
any case, P << M . In the following, we will explain in more
details Algorithm 2. In general, it is quite challenging to find a
good proposal distribution as it is problem dependent. However,
most commonly used proposal distributions are Gaussian and
uniform. If the Gaussian distribution is selected as the proposal
distribution, the free parameter, since it is conditioned on μ =
θm , is the covariance matrix Σ and for the uniform distribution
it is the interval [a,b]. The prior distribution, which is related to
the initialization algorithm, is also important. Typically, a prior,
distribution, p(θ), is chosen such that the posterior p(θ|y1:K )
has the same functional form as the prior, i.e., so called conjugate
prior distribution [14].
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Fig. 1. Histogram of the estimated parameter vector θ = [θ1 , θ2 ] for
M = 5000 and P = 1.

In this paper, it is assumed that p(xk |xk−1 ,θ) and
p(yk |xk ,θ) are Gaussian distribution. In most cases, the
unknown parameter vector θ contains coefficients of the
mean and covariance matrix of the distributions describing
the state-transition and measurement equations: p(xk |xk−1)
and p(yk |xk ). For the case, when the mean of distribu-
tions p(xk |xk−1) and p(yk |xk ), denoted μstate and μmeas

are unknown, the unknown parameter vector is denoted:
θ = [μstate

1 , . . . μstate
1 , . . . μmeas

1 , . . . , μmeas
n ]. For that particu-

lar case, the conjugate prior should be chosen to be a Gaussian
distribution [14]:

p(θ) = N(θ|μ0 ,Λ
−1
0 ) (15)

where Λ−1
0 = Σ0 . If the mean of the distribution is unknown but

the inverse covariance matrices Λstate and Λmeas , are unknown,
the conjugate prior is Wishart distribution [14]:

p(θ) = W (θ|W, ν) (16)

where θ = [λstate
11 , . . . , λstate

nn , λmeas
11 , . . . , λmeas

nn ] contains coef-
ficients of Λstate and Λmeas , respectively. ν is the number de-
grees of freedom of the distribution and W is a scale matrix
[14]. Finally, if both the mean and the covariance matrices are
unknown, μstate ,μmeas ,Λstate ,Λmeas , the conjugate prior is
normal-Wishart distribution [14]:

p(θ) = p(μ,Λ) = N(μ|μ0 , (βΛ)−1)W (Λ|W, ν) (17)

where β is a constant. As expected with iterative algorithms, the
chain has a convergence time denoted by Minit and this needs
to be taken into account when computing the mean E[θ]. More-
over, the MCMC assumes that the drawn samples θk must be
uncorrelated and therefore it is important to monitor the auto-
correlation function R[n] and skips some samples if necessary.
Finally, it is useful to monitor the acceptance rate as it denotes
the number of the accepted proposal points θm . For a detailed
discussion on convergence criteria see [18].

In Figs. 1–3, an example of the joint parameter and state esti-
mation employing MH algorithm and Kalman filter is illustrated
for the following SSM:

xk ∼ N(axk−1 , b) (18)

yk ∼ N(cxk , d) (19)

Fig. 2. Histogram of the estimated parameter vector θ = [θ1 , θ2 ] for
M = 500 and P = 10.

Fig. 3. The estimated mean of the parameters for increasing number of
iterations.

where the parameter vector is θ = [θ1 , θ2 , θ3 , θ4 ] ≡ [a, b, c, d].
The SSM shown in equation (18), (19) can be related to the
characterization of an AR process, xk , (phase noise or nonlin-
ear phase noise) in terms of the coefficient a and variance, b,
from the measured data yk , where d represents measurement
noise variance and c is the scaling coefficient. In the following,
we would like to estimate the parameters describing the state
evolution, i.e., a and b. The task is then to perform estimation of
θstate = [a, b] by employing the MH algorithm in combination
with Kalman filtering as explained in Algorithm 2.

In Figs. 1–3, the output of MCMC algorithm employing MH
and Kalman filtering is shown. Figs. 1 and 2 show the histogram
of the estimated parameter vector θ = [θ1 , θ2 ] ≡ [a, b]. In Fig. 1,
the number of samples is M = 5000 and number of lags is
P = 1 while in Fig. 2, the number of samples is M = 500 and
number of lags is P = 10. Comparing Figs. 1 and 2 illustrates
that for the considered case increasing the number of lags and
decreasing the number of samples decreases the variance of the
posterior distribution of θ. In Fig. 3, the estimated mean of
the parameters is plotted as a number of iterations m. Fig. 3
shows that the MH algorithm converges after approximately
100 samples and the estimated mean values are close to the true
values of 0.5 and 1.
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Fig. 4. System set-up for WDM transmission system. MUX: multiplexing, ROADM: reconfigurable add drop multiplexer, DEMUX: demultiplexer, T N
x : N th

transmitter, SMF: single mode fibre, R0
x : receiver for the middle channel and NL: nonlinearity.

III. XPM COMPENSATION

In Fig. 4, wavelength division multiplexed system (WDM) is
shown together with the digital signal processing (DSP) based
demodulation stages. If the single channel digital back propa-
gation (DBP) is used for compensation of intra-channel nonlin-
earties, it has been shown by Tao et al., [19], that the impact
of inter-channel nonlinearities in terms of XPM induced polar-
ization scattering and phase noise, can be approximated by the
following closed form channel model:

Y(t) = W(t)S(t) + N(t) (20)

where Y(t) = [yx(t), yy (t)]T and S(t) = [sx(t), sy (t)]T rep-
resent the received and transmitted symbol sequences associ-
ated with x and y polarization, and N(t) = [nx(t), ny (t)]T is
the noise. The transfer matrix, W(t), contains the time-varying
XPM effects and is expressed as [19]:

W(t) =

⎡
⎣

√
1 − |wxy(t)|2ejφx (t) wyx(t)ej (φx (t)+φy (t))

wxyej (φx (t)+φy (t))
√

1 − |wyx(t)|2ejφx (t)

⎤
⎦

(21)

where wxy/yx(t) denotes the effects of XPM induced polar-
ization scattering from x to y polarization and vice versa.
The XPM induced phase noise is denoted by φx/y (t). Similar
model for the nonlinearity transfer function can be deducted
from [20]. This can be observed under assumption that if
|wxy/yx(t)| << 1 in which case Yx(t) = Sx(t)ejφx (t) + wyx

(t)Sy (t)ej (φx (t)+φy (t)) = Sx(t)ejφx (t) + ΔS(t), where ΔS(t)
is the perturbation term. The model shown in equation (21) has
been a subject for the investigation for different compensation
schemes [21], [22]. In most of the cases the full model of W (t)
has not been considered. For instance, in [22], the phase terms
φx/y (t) are set to zero, while in [23], only φx(t) is considered.

It has been shown by simulation and also experimentally that
wxy/yx(t) , φx(t) and φy (t) can be modeled as a time-varying
stochastic processes [19]. In this paper, it is assumed assume
that x(t) = [wxy(t), wyx(t), φx(t), φy (t)] can be approximated
as an AR process. The AR process is a good approximation for
wxy/yx(t), φx(t) and φy (t) as it can take memory of the system
into account. The discrete time AR process, uk of order M is
expressed as:

uk =
M∑
i=1

aiuk−i + v[k] (22)

where vk ∼ N(0, σ2
AR), σ2

AR is the variance of the AR process
and a1 , . . . , aM are the coefficients stating to what extent the
past values influence the time instant k. In order to include the
AR process into the state-space framework, equation (22) needs
to be expressed as a first order AR process. This can be obtain
by introducing the following substitution:

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
k

x2
k

...

xM
k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

uk

uk−1

...

uk−M

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

and the following is obtained:

xk︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

x1
k

x2
k

...

xM
k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

A︷ ︸︸ ︷⎡
⎢⎢⎣

a1 . . . aM −1 aM

1 . . . 0 0

0 . . . 1 0

⎤
⎥⎥⎦

xk −1︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

x1
k−1

x2
k−1

...

xM
k−1

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

vk−1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(24)

To be consistent with the probabilistic SSM defined in equation
(2), (3), equation (24) is expressed as:

xk ∼ N(xk |Axk−1 ,Σ) (25)

where Σ is a diagonal matrix except that the coefficient Σ11 =
σ2

AR . The order of the AR process will strongly depend on
the auto-correlation function describing x(t) which again will
depend on the transmission distance and scenario. To be more
specific, the auto-correlation function will depend if the link is
dispersion managed or unmanaged, and also what kind of optical
amplification is used. Furthermore, in the case of dispersion
managed link, the type of dispersion map will play a significant
role. Therefore, each situation needs to be treated differently.

In the following, the nonlinear SSM employed for tracking
and estimating time-varying parameters describing W(t) is pre-
sented. It is assumed that the effects XPM induced polarization
scattering and phase are well approximated by the first order AR
model. The state vector, xk that is to be estimated is expressed
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in discrete time as:

xk =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
k

x2
k

x3
k

x4
k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�(wxy,k )

�(wxy,k )

φx,k

φy,k

⎤
⎥⎥⎥⎥⎥⎥⎦

(26)

where � and � denote the real and the imaginary part, respec-
tively. To obtain the values for wyx , the following property is
used: wxy = −w∗

xy . The evolution of state vector xk is then
expressed as:

xk =

Aw︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44

⎤
⎥⎥⎥⎥⎥⎦

xk−1 +

⎡
⎢⎢⎢⎢⎢⎣

v1
k−1

v2
k−1

v3
k−1

v4
k−1

⎤
⎥⎥⎥⎥⎥⎦

(27)

where vn
k−1 , n = 1, .., 4 describe the process noise and are sam-

ples drawn from a Gaussian distribution with a zero mean and
variance σ2

w,n The observation, measurement, vector needs to
be split in real and imaginary part and is expressed as:

yk =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
k

y2
k

y3
k

y4
k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�(yx
k )

�(yx
k )

�(yy
k )

�(yy
k )

⎤
⎥⎥⎥⎥⎥⎥⎦

(28)

the transmitted symbols vector and measurement noise
are expressed as: sk =[s1

k , s2
k , s3

k , s4
k ]T =[�(sx

k ),�(sx
k ),�(sy

k ),
�(sy

k )]T and nk = [n1
k , n2

k , n3
k , n4

k ]T = [�(nx
k ),�(nx

k ),�(ny
k ),

�(ny
k )]T , where T denotes the transpose operation. The mea-

surement equation is then expressed as:⎡
⎢⎢⎢⎢⎢⎢⎣

y1
k

y2
k

y3
k

y4
k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

h1(xk , sk )

h2(xk , sk )

h3(xk , sk )

h4(xk , sk )

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

n1
k

n2
k

n3
k

n4
k

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

where Hk (xk , sk ) = [h1(xk , sk ), . . . , h4(xk , sk )]T are ex-
pressed as:

h1(xk , sk ) =

h2(xk , sk ) =

h3(xk , sk ) =

h4(xk , sk ) =

−Bs1
k (sin Δφ cos φ − sinφ cos Δφ)

+Bs1
k (sin Δφ sinφ + cos Δφ cos φ)

+Bs3
k (sin Δφ cos φ − sinφ cos Δφ)

−Bs3
k (sin Δφ sinφ + cos Δφ cos φ)

Fig. 5. Required OSNR, to achieve SER of 10−3 , as a function of variance of
the polarization scattering process, wxy , for 28 Gbaud DP-QPSK system. The
XPM induced phase noise is set to zero.

−Bs2
k (sin Δφ cos φ − sin φ cos Δφ)

−Bs2
k (sin Δφ sin φ + cos Δφ cos φ)

+Bs4
k (sin Δφ cos φ − sin φ cos Δφ)

+Bs4
k (sin Δφ sin φ + cos Δφ cos φ)

−s3
k (w1 cos φ − w2 sinφ) + s4

k (w1 sinφ − w2 cos φ)

−s3
k (w1 sin φ + w2 cos φ) − s4

k (w1 cos φ − w2 sinφ)

+s1
k (w1 cos φ − w2 sinφ) − s2

k (w1 sinφ − w2 cos φ)

+s1
k (w1 sin φ + w2 cos φ) + s2

k (w1 cos φ − w2 sinφ)

(30)

where B =
√

1 − |x1
k + jx2

k |2 , φ = (x3
k + x4

k )/2 and Δφ =
(x3

k − x4
k )/2.

In summary, the probabilistic SSM describing the effects of
XPM induced polarization scattering and phase noise is ex-
pressed as:

xk ∼ N(xk |Awxk−1 ,Σw ) (31)

yk ∼ N(yk |Hk (xk , sk ),Σn ) (32)

where Σw and Σn are process and measurement covariance ma-
trices, respectively. The matrixH(xk , sk ) is a nonlinear function
of the states and iterative estimation of the state vector xk is a
challenging task as approximative nonlinear filtering methods
need to be employed. For estimating the state vector xk , dif-
ferent types of nonlinear filtering methods need to be applied:
extended, unscented and cubature Kalman filter or more general
particle filtering. In this paper, extended Kalman and particle
filtering are employed. For the implementation of the extended
Kalman and particle filter see [16], [15]. At each iteration step,
the compensation is performed by applying W−1 to the symbol
vector yk .

In Figs. 5–6, the required optical signal to noise ratio (OSNR)
to achieve symbol error rate (SER) of 10−3 is computed as a
function of increasing variance of XPM induced polarization
scattering wxy for dual polarization (DP) QPSK and 16-QAM,
respectively. The SER is determined by comparing the trans-
mitted symbol sequence in the two polarizations, sk = [sx

k , sy
k ],
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Fig. 6. Required OSNR, to achieve SER of 10−3 , as a function of variance
of the polarization scattering process, wxy , for 28 Gbaud DP-16QAM system.
The XPM induced phase noise is set to zero.

Fig. 7. SER as a function OSNR for 28 Gbaud DP-QPSK in the presence of
XPM induced polarization scattering and phase noise with the corresponding
variances of 0.03 and 4 deg2 , respectively

to the estimated one obtained thorough the compensation stage
sest
k = W−1yk . The XPM induced phase noise is set to zero.

The lower bound is computed by assuming that the process wxy
is known at the compensation block and by adding the process
noise to it with the variance corresponding to the variance of wxy
process. It is observed from Figs. 5–6 that successful compen-
sation of XPM induced polarization scattering is achievable.
However, for DP-QPSK we are able to operate closer to the
lower bound than for DP-16QAM. The performance of the ex-
tended Kalman and particle filter is similar. In Figs. 7–8, the
joint impact of XPM induced polarization scattering and phase
noise on SER is investigated. The achievable gain in terms of
OSNR is approximately 3 dB at SER of 4 · 10−2 for DP-QPSK
and DP-16QAM, respectively.

IV. CARRIER RECOVERY

The majority of carrier recovery algorithms have been de-
signed for sources with Lorentzian lineshape. For more com-
plicated lineshapes, the standard phase recovery algorithm may
result in penalties [7]. In Fig. 9, frequency noise (FM) spectra
of a laser having Lorentzian and non-Lorentzian lineshape is
illustrated. The Lorentzian lineshape is fully characterized by
the linewidth Δν and is expressed by the following stochastic

Fig. 8. SER as a function OSNR for 28 Gbaud DP-16QAM in the presence
of XPM induced polarization scattering and phase noise with the corresponding
variances of 0.01 and 1.71 deg2 , respectively

Fig. 9. Power spectral density of FM noise.

differential equation:

dφ

dt
= v(t) (33)

where v(t) ∼ N(0, σ2
φ) and σ2

φ is the variance proportional to
the linewidth Δν. The non-Lorentzian lineshape in Fig. 9 is
characterized by 1/f noise crossing frequency fcross , resonance
frequency, fR , linewidth enhancement factor, α, the width of the
resonance peak, K and the linewidth Δν. Rigorously speaking,
the stochastic differential equation describing the phase evolu-
tion phase of a laser is obtained from the rate equations and is
expressed as:

dφ

dt
= αGN N(t) + v(t) (34)

where N(t) is the excess carrier concentration and GN is the dif-
ferential gain. In general, the laser rate equation are set of contin-
ues times stochastic differential equation that can be formulated
into discrete state-space framework using Euler-Maruyama dis-
cretization scheme [7]:

⎡
⎢⎢⎢⎢⎢⎣

Ωk

φk

ρk

Nk

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 a24

0 0 a33 a34

0 0 a43 a44

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Ωk−1

φk−1

ρk−1

Nk−1

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

v1
k−1

v2
k−1

v3
k−1

v4
k−1

⎤
⎥⎥⎥⎥⎥⎦
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Fig. 10. BER ratio as a function of OSNR for carrier recovery employing
digital PLL and rate equations based Kalman filter.

[
yx

k

yy
k

]
=

[
sx

k ei(Ωk kTs +φk )

sy
kei(Ωk kTs +φk )

]
+

[
n1

k

n2
k

]

where Ωk , φk , ρk , Nk and Ts are frequency offset between
transmitter and LO oscillator laser, phase deviation, output
intensity perturbation, excess carrier concentration and sam-
pling time, respectively. Coefficients of the matrix A can be
directly related to the rate-equations [7]. We would like to
stress that the frequency offset is not an integral part of the
rate equations describing the laser. However, due to the coher-
ent intra-dyne detection there will be a non zero frequency offset
between the transmitter and the LO laser. If the frequency off-
set correction is performed before the carrier recovery stage,
the frequency offset should not be included in the state-space
framework. However, since we are already employing the state-
space framework for phase estimation, it is very convenient to
include the frequency offset as well. In that way, joint estima-
tion of the frequency and phase is performed. Fig. 10, shows the
experiential performance of polarization multiplexed 28 Gbaud
16-QAM, for a semiconductor laser using power spectrum den-
sity characterized by a Lorentzian linewidth of 500 kHz, 1 GHz
relaxation resonance frequency and 0.1 ns damping factor. The
bit error rate (BER) is computed as a function of OSNR for DSP
chain employing a standard second-order digital phase locked
loop (PLL) and EKF, with SSM described above, for carrier
recovery. Employing the PLL data cannot be successfully de-
modulated as the phase noise model is more complicated than
pure Lorentzian. Employing the EKF framework successful data
demodulation is achieved.

V. GAUSSIAN MIXTURE MODEL

In this section, GMM is briefly reviewed and it is illustrated
how GMM can be applied for nonlinear phase noise compensa-
tion and to silicon photonics process characterization.

Let us assume that we have acquired a data set Ξ =
[y1 , . . . ,yN ] with dimensions D × N , where D is the dimen-
sion of a variable y and N is the number of data points. Super-
position of Gaussian distributions can be used to approximate
any measured distribution and probability density function of Ξ

Fig. 11. Experimental results: demodulated signal constellation impaired by
nonlinear phase noise for 14 Gbaud DP 16-QAM after 800 km of transmission
through a dispersion managed link.

can thereby be approximated as:

p(Ξ) =
M∑

k=1

πkN (Ξ|μk ,Σk ) (35)

where M is the number of mixture components, μk and Σk

represent the mean and the covariance of each component, re-
spectively. Moreover, πk is a mixing coefficient, (

∑M
k πk = 1),

describing weighting factor of each Gaussian distribution con-
tributing to p(Ξ). In order for p(Ξ) to properly represent the
data set, Ξ, the GMM expressed in equation (35) needs to be
parameterized in terms of πk ,μk and Σk . This is achieved by
maximizing the log likelihood function, log p(Ξ|π,μ,Σ) of the
data set Ξ. The log likelihood function is expressed as:

ln p(Ξ|π,μ,Σ) =
N∑

n=1

log
{ M∑

k=1

πkN (yn |μk ,Σk )
}

(36)

where N is the number of data points. It is explained in [14]
that direct maximization of equation (36) is problematic and
can results in significant overfitting. Therefore, the iterative EM
framework needs to be used instead to learn the parameters,
π,μ and Σ. The EM is a two step iterative procedure which
is guaranteed to converge to the (local) ML solution. For the
implementation of EM algorithm, see [24].

A. Nonlinear Phase Noise Compensation

For the circularly symmetric noise distributions, the noise co-
variance matrix is diagonal and has equal coefficients. This is
typically the case for a linear transmission channel with addi-
tive white Gaussian noise. For that particular case, the optimum
symbol detection is performed by minimizing the Euclidean
distance between a received symbol, yn and the corresponding
reference constellation. In contrast, for a nonlinear transmis-
sion channel dominated by the nonlinear phase noise, Fig. 11,
the noise covariance matrix is no longer diagonal with equal
coefficients.

The optimal signal detection is then obtained by maximizing
a posteriori probability of the received symbol yn belonging
to one of the reference constellation points denoted k, where
k = 1, . . . ,M and M is the constellation size:

k̂ = argmax
k

p(k|yn ) (37)
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or in another words find a constellation point k for which p(k|x)
is maximized. The a posteriori probability p(k|y) is obtained
from Bayes’ theorem:

p(k|yn ) =
πkN (yn |μk ,Σk )∑M
l=1 πlN (yn |μl ,Σl)

. (38)

To compute optimum symbol detection, the posterior prob-
ability of a received symbol yn belonging to one of the points
reference constellation points k needs to be computed:

p(k|yn ) = arg max
k

{
πkN (yn |μk ,Σk )∑M
l=1 πlN (yn |μl ,Σl)

}
(39)

where n = 1, ..,M and M is the constellation size, N(·) de-
notes 2-D Gaussian distribution, Σk is a 2 × 2 corresponding
covariance matrix, μk are the corresponding means and πk is a
mixing coefficient which is 1/M for uniformly distributed con-
stellations. In Eq. (39), it has been assumed that the likelihood
function of received symbols has Gaussian distribution. In order
to evaluate Eq. (39), parameters of the distribution Σk and μk

need to be learned from the received data.
The parameters {Σn , μn} are obtained by solving the opti-

mization problem expressed by equation (39), and is achieved
by applying the EM algorithm. In Fig. 11, optimum decision
boundaries, in a ML sense, are computed based on equation
(39) and displayed for a DP 16-QAM system employing dis-
persion managed links. It is observed in Fig. 11, that for the
considered case, the optimum decision boundaries significantly
deviate from the rectangular ones. Nonlinear decision bound-
aries can also be employed to mitigate nonlinearities and skew
associated with in-phase and quadrature modulators.

The EM algorithm needs training data of length N to learn
the corresponding means and covariance matrices. During the
training period the complexity of the EM algorithm scales as
O(IMN), where I is the number of iterations. After the train-
ing period (test period), the complexity of the EM algorithm
and thereby optimum decision boundaries is reduced to O(M).
As the complexity of the EM algorithm scales linearly with
the number of training data, N , practical implementation of the
algorithm is feasible. The question is what is the sufficient num-
ber of the training data points N . This will be dependent on the
modulation format as well as the transmission link parameters
and is left for the future work.

B. Learning Integrated Photonics Fabrication Variation

Nano-scale optical devices such as: directional couplers, in-
tegrated microring resonators, nano-cavity based lasers and
waveguides are sensitive to the underlying structure variations.
Variations in the structure geometry may lead to significant per-
formance degradations and characterizations of such variations
is therefore important. Recently, there has been some initial
work to predict and quantify the impact of process variations
[25]. In many cases, it may prove useful to quantify the underly-
ing distribution of the process variations. Once the distribution
has been determined samples can be generated which can po-
tentially be used to determine the impact on the overall system
performance.

Fig. 12. AIC as a function of number components of GMM.

We follow the example of [25] of SOI based directional
coupler were there are variations in the coupler’s inner, wi ,
and outer, we , sidewalls width, i.e., w = [wi, wo ]T . It is ex-
pected that wi and wo are correlated as both are related to
the lithography conditions. Next, we form 2 × N data set,
Ξ = [w1 , . . . ,wN ]. This example is also closely related to the
variations of holes geometry in photonic crystal cavity struc-
tures. We would like to determine the underlying distribution of
Ξ and therefore approximate p(Ξ) with a mixture of Gaussian
distributions, equation (35). For the nonlinear phase noise com-
pensation case, the number of mixture components is known,
however, for the particular case of SOI coupler, the number of
mixture components is unknown. The task is then to estimate
the number of mixture components, the subsequent mean vec-
tors and covariance matrices in a ML sense. In order, to find
the number of mixture components, maximization of Akaike
Information Criterion (AIC) can be used [14]:

AIC = argmax
M

{ N∑
n=1

ln
{ M∑

k=1

πkN (wn |μk ,Σk )
}
− M

}
.

(40)
In short, different models, specified by M , are tried and the

one that maximizes AIC is chosen. This is now demonstrated on
the example of the SOI coupler. It is assumed that the distribution
of Ξ is expressed as in equation (41):

p(Ξ) =
2∑

k=1

πkN (Ξ|μk ,Σk ) (41)

where [π1 , π2 ] = [0.6, 0.4], μ1 = [9, 6]T nm, μ2 = [8, 7]T nm,
Σ1 = [6, 0; 0, 3] nm2 and Σ1 = [5, 1; 1, 4] nm2 . The task is to
approximate the distribution in equation (41) in a best possible
way. This can be achieved by using equation (35) and the EM
algorithm in combination with AIK criterion. In Fig. 12, AIC is
plotted as a function of number of mixing components. It is ob-
served that AIC is maximized when the number of components
is two, which is in accordance withe the specified distribution
in equation (41). In Figs. 13 and 14, contour plots of the ”true”
distribution specified by equation (41) and the estimated one by
employing EM algorithm for mean and covariance estimation
are shown, respectively. It is observed that there is a qualitatively
good agreement between Figs. 13 and 14.
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Fig. 13. Contour plot of the 2-D distribution specified by equation (41).

Fig. 14. Contour plot of the estimated 2-D distribution approximating equa-
tion (41).

Fig. 15. Probability density function, p(X ) of a random variable X .

For evaluating the system performance, one would like
to investigate the impact of certain device parameter variations.
In this way, it is possible to quantify to which device parame-
ter variations, the system is most sensitive to. For that purpose,
we would like to generate samples that have distributions fol-
lowing the device variations. In general, there are many ways
of sampling from the certain distribution, see reference [14].
For instance, sampling from the Gaussian distribution can be
achieved using the Box-Muller method. However, in some cases
if the specified distribution is not Gaussian like the one shown in
Fig. 15, it becomes more challenging to perform sampling. For
more complex distributions, the MCMC algorithm described

Fig. 16. Histograms of the samples, generated by the MH algorithm, that
approximate p(X ).

in Section II-A can be used to perform sampling. In Fig. 16,
histogram of the generated samples using the MH sampling
algorithm is shown. It is observed that MH MCMC sampling
algorithm is able to generate samples that approximate the dis-
tribution specified in Fig. 15.

VI. CONCLUSION

It has been demonstrated that machine learning techniques
employing nonlinear state-space framework in combination
with MHs sampling algorithm and Bayesian filtering can be
employed for a variety of tasks relevant to optical communica-
tion such as: system identification, XPM induced polarization
scattering and phase noise mitigation and laser rate equation
based carrier recovery. The presented framework is a powerful
tool as it can be adapted to take into account the underlying
physics of the channel and optical components resulting in the
overall system improvement. For the considered case of XPM
compensation, achievable gains of more than 2 dB have been
shown. For the carrier recovery, it has been demonstrated that
by employing the laser rate equation based carrier recovery
signals with non-Lorentzian lineshape could be demodulated,
while employing the second order PLL, (proportional integrator
loop filter), signals could not be demodulated. To take the full
benefit of the framework, proper characterization and inference
of the SSM process equation, describing the state evolution,
is crucial. This is especially challenging if the state model is
not linear and has high dimensionality, due to induced memory,
which may be the case for multi-channel optical transmission
systems operating in the nonlinear regime and for the optical
sources operating under large signal conditions.

Moreover, it has been demonstrated that the GMM in combi-
nation with EM can be employed for computation of nonlinear
decision boundaries and characterization of distributions of in-
tegrated silicon photonics devices.
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L. Schmalen, and G. Charlet, “1-Terabit/s net data rate transceiver based
on single carrier Nyquist shaped 124 GBaud PDM 32QAM,” presented
at the Optical Fiber Communication Conf. Exhibition, Los Angeles, CA,
USA, 2015, Paper PDP Th5B.1.

[6] C. Laperle and M. O’Sullivan, “ Advances in high speed DACs ADCs and
DSP for optical coherent transceivers,” J. Lightw. Technol., vol. 32, no. 4,
pp. 629–643, Feb. 15, 2014.

[7] M. Piels, M. I. Olmedo, S. Member, W. Xue, X. Pang, C. Sch, R. Schatz,
G. Jacobsen, I. T. Monroy, S. Member, J. Mork, S. Popov, and D. Zibar,
“Laser rate equation-based filtering for carrier recovery in characterization
and communication,” J. Lightw. Technol., vol. 33, no. 15, pp. 3271–3279,
Aug. 1, 2015.

[8] E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a non-
linear optical channel with finite memory,” J. Lightw. Technol., vol. 32,
no. 16, pp. 2862–2876, Aug. 2014.

[9] N. V. Irukulapati, H. Wymeersch, P. Johannisson, and E. Agrell, “Stochas-
tic digital backpropagation,” IEEE Trans. Commun., vol. 62, no. 11,
pp. 3956–3967, Nov. 2014.

[10] D. Zibar, M. Piels, R. Jones, and C. G. Schaeffer, “Machine learning tech-
niques in optical communication,” presented at the European Conf. Exhi-
bition Optical Communication, Valencia, Spain, 2015, Paper Th.2.6.1.

[11] M. I. Yousefi and F. R. Kschischang, “Information transmission using the
nonlinear Fourier transform, Part III: Spectrum modulation,” IEEE Trans.
Inf. Theory, vol. 60, no. 7, pp. 4346–4369, Jul. 2014.

[12] H. Buelow, “Experimental demonstration of optical signal detection using
nonlinear Fourier transform,” J. Lightw. Technol., vol. 33, no. 7, pp. 1433–
1439, Apr. 1, 2015.

[13] J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and
S. K. Turitsyn, “Nonlinear inverse synthesis and eigenvalue division mul-
tiplexing in optical fiber channels,” Phys. Rev. Lett., vol. 113, no. 1,
pp. 13901-1–13901-5, 2014.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[15] D. Zibar, L. Henrique, H. D. Carvalho, M. Piels, A. Doberstein, J. Diniz,
B. Nebendahl, C. Franciscangelis, J. Estaran, H. Haisch, N. G. Gonzalez,
J. C. R. F. D. Oliveira, and I. T. Monroy, “Application of machine learning
techniques for amplitude and phase noise characterization,” J. Lightw.
Technol., vol. 33, no. 7, pp. 1333–1343, Apr. 1, 2015.

[16] S. Sarkka, Bayesian Filtering and Smoothing. Cambridge, U.K.:
Cambridge Univ. Press, 2013.

[17] L. Ljung, “Some classical and some new ideas for identification of linear
systems,” J. Control, Autom. Elect. Syst., vol. 24, nos. 1/2, pp. 3–10, 2013.

[18] J. C. Spall, “Estimation via Markov chain Monte Carlo,” IEEE Control
Syst. Mag., vol. 23, no. 2, pp. 34–45, Apr. 2003.

[19] Z. Tao, W. Yan, L. Liu, L. Li, S. Oda, T. Hoshida, and J. C. Ras-
mussen, “Simple fiber model for determination of XPM effects,” J. Lightw.
Technol., vol. 29, no. 7, pp. 974–986, Apr. 2011.

[20] R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Inter-Channel nonlinear
interference noise in WDM Systems: Modeling and mitigation,” J. Lightw.
Technol., vol. 33, no. 5, pp. 1044–1053, Mar. 2015.

[21] L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. Rasmussen,
“Nonlinear polarization crosstalk canceller for dual-polarization digital
coherent receivers,” presented at the Optical Fiber Communication Conf.
Exhibition, Los Angeles, CA, USA, 2010, Paper OWE3.

[22] P. Layec, A. Ghazisaeidi, G. Charlet, J.-C. Antona, and S. Bigo, “Gen-
eralized maximum likelihood for cross-polarization modulation effects
compensation,” J. Lightw. Technol., vol. 33, no. 7, pp. 1300–1307,
Apr. 2015.

[23] T. Fehenberger, P. M. Yankov, L. Barletta, and N. Hanik, “Compensation
of XPM interference by blind tracking of the nonlinear phase in WDM
systems with QAM input,” presented at the European Conf. Exhibition
Optical Communication, Valencia, Spain, 2015, Paper P.5.8.

[24] D. Zibar, O. Winther, and N. Franceschi, “Nonlinear impairment com-
pensation using expectation maximization for dispersion managed and
unmanaged PDM 16-QAM transmission,” Opt. Exp., vol. 20, no. 26,
pp. 181–196, 2012.

[25] T.-W. Weng, Z. Zhang, Z. Su, Y. Marzouk, A. Melloni, and L. Daniel,
“Uncertainty quantification of silicon photonic devices with correlated
and non-gaussian random parameters,” Opt. Exp., vol. 23, no. 4, pp. 4242–
4254, Feb. 2015.

Darko Zibar received the M.Sc. degree in telecommunication and the Ph.D.
degree in optical communications from the Technical University of Denmark,
Lyngby, Denmark, in 2004 and 2007, respectively. He was a Visiting Researcher
with the Optoelectronic Research Group, University of California, Santa
Barbara, CA, USA, in 2006 and 2008, where he worked on coherent receivers
for analog optical links. From February 2009 to July 2009, he was a Visiting
Researcher with Nokia-Siemens Networks, where he worked on clock recovery
techniques for polarization multiplexed systems. He is currently an Associate
Professor at DTU Fotonik, Technical University of Denmark. His research inter-
ests include application of machine learning methods to optical communication
systems.

Molly Piels received the B.S. degree in engineering, the B.A. degree in history
from Swarthmore College in 2008, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of California, Santa Barbara,
Santa Barbara, CA, USA, in 2009 and 2013, respectively. She is currently a
Researcher in the High-Speed Optical Communications Group, DTU Fotonik,
Lyngby, Denmark. Her research interests include coherent communication and
space division multiplexing

Rasmus Jones received the M.Sc. degree in telecommunications engineering
from the Technical University of Denmark, Lyngby, Denmark, in 2015. He
is currently working toward the Ph.D. degree in fiber-optic communication
systems at the Department of Photonics Engineering, Technical University of
Denmark. His research interests include digital transmissions and nonlinear
signal processing with emphasis on machine learning techniques.
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Professor with the Department of Electrical Engineering. Between 1999–2009,
he was a Full Professor for RF and Photonics, at the Communications Labo-
ratory, Dresden University of Technology, Germany. He is currently with the
Helmut Schmidt University, Hamburg, Germany. His research interests include
microwave photonics, optical frequency synthesis, Fiber-Bragg gratings, dis-
persion compensation, Silicon photonics and coherent quantum communication
systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


