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Abstract We propose and demonstrate a cognitive fault detection architecture for intelligent network 

assurance. Our framework both detects and identifies significant faults, and outperforms conventional 

fixed threshold-triggered operations, both in terms of detection accuracy and proactive reaction time. 

Introduction 

Network assurance is a key operational 

requirement of modern optical communication 

systems. Traditionally, this has been achieved by 

introducing redundancy in network architectures, 

service level agreements (SLAs) based on 

conservative designs, etc. resulting in high capital 

expenditure. On the other hand, with the 

inception of 5G technologies – and subsequent 

front-haul and back-haul dynamic connectivity 

requirements, the task of network assurance is 

becoming increasingly complex, and 

necessitates novel architectures incorporating 

automated, flexible and reliable – potentially 

open – network management solutions. In this 

context, software-defined networking (SDN) 

proposes centralized network controllers to 

enhance network programmability by separation 

of data and control plane. Likewise, network 

monitoring approaches have been reported using 

distributed and centralized frameworks1. 

However, typical network management functions 

make use of pre-determined threshold-based 

triggers for configuration, restoration, planning, 

etc. This often leads to underutilization of network 

resources due to pessimistic design conditions. 

Furthermore, service and network behaviour can 

evolve in an unpredictable manner, and catering 

such faults using fixed thresholds not only 

exposes the network to unacceptable SLA 

breaches, but is also a non-scalable approach – 

with increasing network complexity. While 

anomaly-based virtual service and capacity 

planning has been proposed in literature2,3, 

network assurance involving automated fault 

detection remains largely unexplored.  

In this paper we propose a transport SDN 

(TSDN)-integrated cognitive fault detection 

architecture, incorporating data analytics based 

on advanced machine learning methods. In 

particular, we disclose various types of real-life 

network fault use cases, extracted from our 

sample customer network, identify them using the 

proactive fault detection (PFD) framework, and 

compare its efficiency with traditional condition-

based set point detection.  

Overall Architecture 

Our proposed architecture aims to proactively 

detect potential failures in real-time, replacing the 

static pre-defined fault thresholds. Fig. 1 depicts 

the software architecture for our approach, where 

the PFD framework is located within the TSDN 

controller. The monitoring data is collected every 

15minutes through the southbound interface 

(SBI) – NETCONF, which is abstracted and 

stored in a database. The engine performs fault 

detection and classification, generates fault layer 

information (by mapping the metadata), fault 

locations, and maps the machine learning 

outcome to an internal decision engine followed 

by respective application (not specified here), 

exposed via RESTCONF to the northbound 

interface (NBI). The optical controller is an ADVA 

controller, whereas hardware components – in 

the given example –, comprise of ADVA 

FSP3000 network elements. Note that we 

consider a TSDN-integrated approach for our 

framework, however, the proposed architecture 

may be disintegrated, decentralized or used as 

part of an orchestrator as well. Furthermore, 

 
Fig. 1: TSDN controller with PFD architecture. Underlying 
network/service (arrow) is exemplary, and representative 
of sample network. PFD: Proactive fault detection 
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while we test the proposed approach on features 

monitored at layer 0, the proposed cognitive 

architecture is scalable, and may be reused with, 

for example, packet flows (using OpenFlow, etc.).  

Algorithm and Fault Types 

Tab. 1 details the cognitive fault detection and 

classification approach. The goal of this 

procedure is to retrieve and process data blocks 

(partitioned data), make abnormality decision, 

prune the points which are insignificant, send the 

results to the next cycle, and eventually decide 

on true positives. The algorithm takes as input the 

monitoring data, and outputs labels for normal 

and abnormal operation. The details of the steps 

are as follows: The core of PFD framework 

traverses through the monitored data, and 

applies block based deviation and classification 

tests for a given set. The decision engine predicts 

true abnormal behaviour using neural networks 

based classifier, trained using historical fault 

patterns. Fig. 2 shows the implemented workflow. 

The fault types typically observed in commercial 

networks are classified in Tab. 2. The reported 

fault categories are feature agnostic, and 

applicable to multiple layers in communication 

stack. Network faults can take many forms 

including a spike due to a short-lived event, a 

gradual change in behaviour, a state change due 

to certain configuration changes, and finally 

localized abnormalities indicating potential faults. 

Proof-of-Concept and Discussions 

The experiment was carried out using diverse 

configurations extracted from ADVA’s sample 

customer network, where various patterns were 

simulated, as discussed in Tab. 2. The labels 

represent abnormal behaviour which may or may 

not lead to potential failures. The physical layer 

received optical power levels were pulled in real-

time via the optical controller, and the proposed 

architecture was executed on a host server. The 

monitored data was normalized to same scale  

(-1dBm) for better visualization, and this action 

did not have any impact on the performance. We 

evaluated two scenarios: one employing the PFD 

engine, where the true potential failure scenarios 

were cognitively predicted, and other where PFD 

was replaced by a fixed pre-determined fault 

determination threshold. Note that since we 

normalized our data, a single threshold was used 

for comparison, wherease in practice several 

threshold are required to be defined and 

maintained for various network configurations. 

Fig. 3 shows various fault patterns, as described 

in Tab. 2, for different time traces. Fig. 3a depicts 

the performance of threshold-triggered fault 

detection, where label I is fully detected, labels’ 

III and IV are only partially detected, whereas 

label II remains undetected. In comparison, Fig. 

3b illustrates results from the proposed cognitive 

architecture, where all labels are largely 

detected, except for three (one) potential faults in 

label II (IV). It is worth mentioning that while the 

detection rate of faults is an important metric, the 

fundamental operational requirement is the ability 

to react to such potential failures in time.  

From Tab. 3 it can be observed that our proposed 

architecture outperforms conventional set-point 

based detection, both in terms of detection rate 

and associated response time (defined as time 

from detection to typical alarm level) – for any 

given fault label. Specifically, label IV may be 

adequately addressed before actual failure, with 

a response time of 96hrs, as opposed to no 

Tab. 1: Algorithm for cognitive fault detection framework, 
processing monitored data as an input and generating 
proactive fault information as output 
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Tab. 2: Definitions for typical network fault patterns  

 

Fault Label Description

I
Point abnormalities due to random
flash events and may lead to abrupt
device damage

II
Local abnormalities indicating
potential flaws with potential long-
term impact on service performance

III

Steady abnormalities due to
preceding system configuration
changes, and may lead to damage
and/or consistent performance loss

IV
Ramp abnormalities representing
gradual system and/or service
distortion possibilities

 
Fig. 2: Sequence flow implementation 
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response time at all from threshold-based 

detection. Likewise, label III alarms may be 

issued at least 10hrs prior to failure, whereas 

reaction time to label II depends upon its 

evolution behaviour. While label I is detected by 

both methods, it allows no reaction time due to its 

peak response. Finally, the trade-off between 

accuracy of label detection and true predicted 

faults is shown in the last column, where a ratio 

of 1 shows 100% detection of actual faults 

predictors (determined based on a NN model). 

Qualitatively this means whether the decision 

engine incorporated in PFD framework correctly 

labels significant and nonsignificant fault 

behaviours, based on historically identified fault 

patterns. It can be seen that while PFD performs 

exceedingly well, compared to condition-based 

method, label IV leads to minor over-detection.   

Conclusions 

We reported a cognitive fault detection 

architecture – integrated in TSDN framework – 

for network assurance. The proposed framework 

not only allows for simpler network management, 

getting rid of multiple fixed set point definition and 

maintenance; but also significantly improves the 

proactive fault response time, compared to 

conventional threshold-based failure detection.  

The goal of this work is to introduce a generic 

cognitive assurance architecture, neither limited 

to presented network configuration nor to the 

dataset, and application use cases across 

different network layers are underway. 
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Fig. 3: Monitored layer 0 optical received power levels as a function of traversed time (aggregated to 12 hour bins).  
a) Condition based fault detection, b) Data based fault detection (PFD engine). Highlighted symbols (opacity) represent 
detected faults. Broken lines represent different data samples. For fault label definitions see Tab. 2 
 

 

a

Undetected below set point

Alarm level

Condition based 
Reactive Identification

Sample A
(Label I)

Sample B
(Label III)

Sample C
(Label II)

Sample D
(Label II and IV)R

e
c
e
iv

e
d
 O

p
ti
c
a
l 
P
o
w

e
r 

[d
B
m

]
n
o
rm

a
li
z
e
d
 t

o
 -

1
d
B
m

Single alarm level is used due to data 
normalization (for better visualization).
In practice several levels are required 

to be defined and maintained

Traversed Time [12 hour bins]

Sample A
(Label I)

Sample B
(Label III)

Sample C
(Label II)

Sample D
(Label II and IV)

b

Undetected Undetected

Data-driven 
Proactive Identification

R
e
c
e
iv

e
d
 O

p
ti
c
a
l 
P
o
w

e
r 

[d
B
m

]
n
o
rm

a
li
z
e
d
 t

o
 -

1
d
B
m

Traversed Time [12 hour bins]

Undetected
II II & IV II

Tab. 3: Quantitative summary of Fig. 3 (first two data 
columns), showing performance evaluation of data-
driven and condition-based methods. Third data column 
shows ratio of detected labels in Fig. 3, and actual (true) 
fault predictors (determined by the decision engine)  

 
*assuming label IV-like symmetric behavior 

Fault Label
Detection 
Rate [%]

Proactive 
Reaction

Time [hours]

Detected  
/ True
Faults

Condition-based

L
a
b

e
l 
I 100 0 1

Data-driven 100 0 1

Condition-based

L
a
b

e
l 
I
I

0 0 0

Data-driven ~57 >100* 0.57

Condition-based

L
a
b

e
l 
I
I
I

~45 0 0.45

Data-driven 100 10 1

Condition-based

L
a
b

e
l 
I
V 25 0 .25

Data-driven ~93 96 1.25


