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1 | INTRODUCTION

Summary

Network traffic classification is a fundamental research topic on high-performance
network protocol design and network operation management. Compared with other
state-of-the-art studies done on the network traffic classification, machine learning
(ML) methods are more flexible and intelligent, which can automatically search
for and describe useful structural patterns in a supplied traffic dataset. As a typical
ML method, support vector machines (SVMs) based on statistical theory has high
classification accuracy and stability. However, the performance of SVM classifier
can be severely affected by the data scale, feature dimension, and parameters of
the classifier. In this paper, a real-time accurate SVM training model named SPP-
SVM is proposed. An SPP-SVM is deducted from the scaling dataset and employs
principal component analysis (PCA) to extract data features and verify its relevant
traffic features obtained from PCA. By employing PCA algorithm to do the dimen-
sion extraction, SPP-SVM confirms the critical component features, reduces the
redundancy among them, and lowers the original feature dimension so as to reduce
the over fitting and increase its generalization effectively. The optimal working
parameters of kernel function used in SPP-SVM are derived automatically from
improved particle swarm optimization algorithm, which will optimize the global
solution and make its inertia weight coefficient adaptive without searching for the
parameters in a wide range, traversing all the parameter points in the grid and
adjusting steps gradually. The performance of its two- and multi-class classifiers is
proved over 2 sets of traffic traces, coming from different topological points on
the Internet. Experiments show that the SPP-SVM's two- and multi-class classifiers
are superior to the typical supervised ML algorithms and performs significantly
better than traditional SVM in classification accuracy, dimension, and elapsed time.

protocol analysis—based method is more precise but suffers
high reverse cost. The machine learning technique has

Network traffic classification is defined as a classification of
the network flows that are a mixture of various applications
with different application protocols.' It is the foundation of
high-performance network protocol design and network oper-
ation management. Four traditional rnethods,z_4 which are
port numbers, deep packet inspection (DPI),”° protocol anal-
ysis, and machine learning techniques, based on current traf-
fic classification research suffer from different practical
issues. The port numbers—based method runs faster but is
sensitive to ports confusion. The DPI-based method is
mature, but it is difficult to obtain mode characteristics. The

become popular recently since it can automatically search
for and describe useful structural patterns in a supplied traffic
dataset”® that makes the traffic classification more flexible
and intelligent.

Machine learning methods of traffic classification consist
of unsupervised methods and supervised methods. The unsu-
pervised learning methods cluster dataset samples according
to their similar characteristics instead of prelabeling training
data. As a typical clustering algorithm representative of the
unsupervised traffic classification, K-means is currently used
widely.”' The drawback of the unsupervised traffic
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classification is that it is hard to construct an application-
oriented traffic classifier by using the clustering results
without knowing the real traffic classes.® The supervised
learning methods, such as Naive Bayes,'' support vector
(SVM),'*!3  Bayesian
neighbor (k-NN),8 C4.5 decision tree, 15 and neural networks, 16
etc, require empirical knowledge (also known as prelabeled
training data) to train the classification model and parameters.
As the top of the 7 supervised machine learning algorithms
reported in 1 study,'” in which certain pattern recognition
methods such as Bayesian networks, C4.5 decision tree, and
k-NN, may be trapped into local optimization; SVM maximizes
the optimization margin and is capable to solve high-dimen-
sional nonlinear problem. Meanwhile, SVM starts being used
in traffic classification to get traffic flow parameters from
packet headers' and reduce the training set and approximate
support vectors.'® Support vector machine ensemble has been
constructed by incorporating bagging, boosting, or cross-
validated committee (CVC) characteristics.'® The optimization
algorithm has been proposed to solve multi-class problems.'?

Even though, there are still some accuracy and real-time
traffic classification issues left'®*! because of the rapid growth
of network traffic and the development of backbone network
architecture. How to improve the performance of SVM training
model in real-time classification with a few samples? Whatkind
of kernel should we use? What kind of functions are valid
kernels? How to derive kernel parameters? Etc. All of these
above questions are under investigations. This paper will focus
on solving multi-class problem, selecting kernel function,
reducing dimension of the flow features, and deriving the
optimal parameters. The details are as follows:

machine networks, 14 K-nearest

1. Analyzed applications of two-class SVM approach of
traffic classification and integrated SVM “one-against-
one” approach to solve multi-class problems when
needed,

2. Using principal component analysis (PCA) algorithm for
feature extraction and clarifying the relevant traffic fea-
tures obtained from PCA,

3. Proposed an approach employing improved particle
swarm optimization (PSO) algorithm to search for the
optimal working parameters of kernel function automat-
ically, and

4. Comparing with traditional SVM and the representative-
supervised machine learning algorithm to approve that
the proposed model has improved the traffic classifica-
tion significantly with only few training samples.

In section 2, the related work done on traffic classifica-
tion has been reviewed. Section 3 describes the proposed
methods and framework. Section 4 proposes experimental
framework and evaluates the performance of the proposed
model. Section 5 discusses the proposed model and its build-
ing blocks in depth. Section 6 concludes the work.

2 | RELATED WORK

2.1 | Based on port numbers

Traditional methods based on port numbers traffic classifiers
simply inspect TCP or UDP port numbers and identify the
application layer protocols according to the Internet Assigned
Numbers Authority (IANA) list of well-known ports and reg-
istered ports.g’22 The method was simple and fast in the past.
However, it has become obsolete nowadays. The mapping
between the ports and the target applications is getting more
and more blurred. Thereby port numbers as a classification
mechanism has not been applied, and it is difficult to
deploy.?*2*

2.2 | Based on deep packet inspection

Deep packet inspection methods, usually the most accurate,
are based on inspection of the packets' payload. They rely
on a database of previously known signatures that are associ-
ated to application protocols and search each packet for
strings that match any of the signatures.'>*® Searching feature
string by DPI is generally in the application layer, which is
the load of TCP or UDP. Nevertheless, the main drawbacks
of DPI techniques are the following: (1) There are more and
more nonstandard applications and private protocols without
the open and available protocol specification. This makes the
feature string vary and hard to find. (2) Protocol syntax or
semantic analysis of data needs strong computation power,
leading to a great system overhead.”® So today, DPI is gener-
ally used in traffic identification of the specific applications
or as a supplementary means of tagging the network dataset.

2.3 | Based on protocol analysis

Based on open protocol regulations, protocol analysis
methods analyze the protocols using the following 3 ways
for traffic classification: (1) establishing protocol state
machines, (2) using fingerprint (protocol traffic features or
behavior features) mining, and (3) analyzing flow features
and behavior features of unknown protocols using software
conversation approach.

However, it is very difficult to resolve and obtain effec-
tive features because of the nonstandard applications and
encryption protocols, degrading the classification quality.

2.4 | Based on machine learning techniques

The machine learning methods capture and identify the traf-
fic data packets on the basis of calculating the statistical infor-
mation of the specific application traffic. The methods use
various machine learning algorithms, including supervised
and unsupervised learning algorithms. Supervised learning
builds a classification model from a training set of labeled
instances, which is then used to classify unknown instances.
Alternatively, unsupervised learning groups instances that
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have similar characteristics into natural clusters without any
prior guidance, and these clusters can be transformed into a
classification model.” The machine learning method usually
includes 3 aspects: statistical feature extraction, classifiers
building and training, and new traffic classification. Kim
et al'” evaluated ports-based CoralReef method, host behav-
ior—based BLINC method, and 7 supervised machine learning
methods. Support vector machine was the best, followed by
neural network, k-NN, Bayes networks, Naive Bayes kernel
estimation, Naive Bayes, and C4.5. Williams et al?® evaluated
multi-machine learning methods. According to the overall
accuracy, followed in descending order is Bayesian networks,
C4.5, AdaBoost C4.5, NBTree, AdaBoost NBT, and k-NN.
Alshammari et al?’ used different machine learning algo-
rithms (C4.5, Naive Bayes, and SVM) to identify 13 signa-
tures and 14 attributes of secure shell traffic. From the above
research point of view, the machine learning methods can
automatically search for and describe useful structural pat-
terns in a supplied traffic dataset, which is helpful to intelli-
gently conduct traffic classification. However, the machine
learning methods still face some challenges. Such as the high
computational cost, the high-dimensional feature makes the
algorithms can not adapt real-time traffic classification and
require adjusting various classifiers' parameters frequently
etc. Our main focus is to optimize the performance of super-
vised machine learning algorithms—SVM, so that it can adapt
accurate and real-time traffic classification.

3 | PROPOSED METHODS OF SPP-SVM

3.1 | The SPP-SVM model's framework

The SPP-SVM model's framework is shown in Figure 1. The
model mainly includes the procedure of scaling, feature

extraction, and parameters optimization. We implement the
model through the following steps. (1) We processed the
original dataset using unbiased samples in our experiments.
This guaranteed that the false negative and false positive
ratios are nearly the same in each class. These samples reflect
the different network characteristics among different applica-
tions. (2) The model performance will be affected if the data
is not scaled right. To minimize the data scale effect and
improve the speed of classification, we rescale the data. (3)
To separate training and test sets, we have chosen randomly
50% of unbiased data to form a training set, and the remaining
50% is used as a test set. (4) We use the Andrew Moore
datasets,28 more than 240 features of a single flow, which
require high computation complexity. To adapt real-time
applications, we extracted the features based on PCA algo-
2930 ¢4 reduce the feature dimension. (5) The kernel
type, kernel parameters, and penalty factor C control the gen-
eralization of SVM. However, the computing overhead will
increase sharply for optimizing the parameters with the grow-
ing dataset. We automatically derive the optimal parameters
of the model based on improved PSO, which can increase
the accuracy of classification. (6) We use cross-validation
method to train and generate the SPP-SVM classifier model.
(7) We classify the test set and get the classification results
based on the SPP-SVM classifier model. The methods are
detailed in sections 3.2 to 3.6.

rithm

3.2 | Classifier of SPP-SVM

3.2.1 | Two-class SVM

Classification usually involves with training and testing data,
which consist of some data instances. Each instance in the
training set contains one ‘“‘target value” and several “attri-
butes.” The goal of SVM is to produce a model to predict

Processing

[ Original | \‘
| dataset \ |

FIGURE 1 Framework of SPP-SVM model.
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target value of data instances in the testing set, which has
only the attributes.>'

Given a training set of instance-label pairs (x;,y;),
i=1,---,l, where x;€R" and ye{1,—1}’, the function
¢(x) is defined as the mapping of the space to a high-
dimensional feature space Z, w is the weight vector, and b
is the threshold. The optimal classification plane is general-
ized, and the relaxation factor &;>0 is introduced, which
makes the sample satisfy Equation 1. The SVMs require
the solution of the following optimization problem as in
Equation 2.

yi[whxi—i_b}zl_fi? i= 17"'517 (1)

1 I
mingw'w + €2,

{y,.[w ) +b] 215, i= 1,1
s.I. '

51’205 i= 17'"al

To solve the original problem, we introduced the dual
problem of Equation 2, such as in Equation 3. The inner
product kernel function is instead of K(x;x;)=@(x)p(x)).

The final classification discriminant function is f(x) =

!
2 @y;K(x;-x) + b. Among them, a; is the Lagrange multi-
i=1

plier, and the corresponding training sample point is the sup-
port vector when «; is not 0. K is a kernel function to solve
nonlinear problems.*** C is a penalty coefficient, which is
used to control the error during the training.

11 i
min Y, Zinjai“j¢(xi>¢ (xj) - ;ai

i=lj=1
3

1
Zyiai =0
s.t.{ i=1

0<a<C, i=1,-1

3.2.2 | Multi-class SVM

We integrate SVM one-against-one approach to solve multi-
class problems. About k-class data, one-against-one—based
SVM classifier builds k(k — 1)/2classifiers. Each classifier
only trains two-class data. The data of i- and j-classes build
the classifier c;, which is required to solve the quadratic opti-
mization problems shown as in Equation 4 below.

min l(w"‘j) Twi 4 Ci{,’i'j
1

wii bt £
W) p(x) + D21y =i @)
(W) pox) + b1+ &y, =

£20

After the k(k—1)/2 classifiers are built, we used the
“voting” strategy to predict the unknown sample. Set the ini-
tial value of the votes to 0, for example x, subsequently make
judgment on k(k — 1)/2 numbers of the decision functions—
sign((wi J )Tgb(x) +b"J). If classifier c;; determines x to belong
to category i, then 1 vote is added to category i. If the classi-
fier determines x to belong to category j, then 1 vote is added
to category j. The higher votes will determine which category
sample x belongs to, after k(k — 1)/2 numbers of classifiers are
verified. The same rule applies to “one-against-multiple.” If
more than 1 categories get high votes, one of the categories
will be picked randomly, or the decision will be rejected. In
reality, solving the problem is also to solve the dual-problem
of the original quadratic optimization problem. Every vari-
able of each dual-problem is a sample size of 2 types of cat-
egories. Therefore, if the number of input sample size is “n”
and totally “k” types of categories, then the entire problem is
to solve k(k — 1)/2 quadratic optimization problems. On aver-
age, each problem has 2n/k variables.

3.3 | Kernel function

Kernel function can map the linearly inseparable samples
from the lower dimensional space to the higher one. After
mapping, the samples are linear and separable. Then in the
high-dimensional space, a classification plane can be built
to separate the 2 types of samples evenly. The function that
meets the conditions of the Mercer function can be consid-
ered as the kernel function of SVM. The selection of kernel
function will affect the classification results of SVM. There
are 4 main kernel functions at present'’:

3.3.1 | Linear: K(x,»,xj)=x,-T,xj

When the samples are separable in a lower dimensional
space, classification can use the linear kernel function
directly. But in lower dimensional space, most samples are
linearly inseparable.

3.3.2 | Polynomial: K(x;,x;) = (yxiTxJ- +r), y>0

Parameter d represents the number of dimensions of a kernel
function. Polynomial kernel function is part of the global
kernel functions. Its locality is poor. Even sample points from
a distance can impact the classifier.

3.3.3 | Radial basis function (RBF): K(x;,x;) = exp (=7 x;
—X; )2 ,y>0

Radial basis function kernel has a good classification effect
on the near sample points. The locality performance is per-
fect, while the generalization ability is weakened accordingly
when the parameter y is increased.

334 | Sigmoid: K(x;,x;) = tanh(yx,-ij+r)

The sigmoid kernel function needs to satisfy certain condi-
tions when it is used. The kernel has good global conver-
gence and is equivalent to two-layer neural network.
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Above 4 main kernel functions, the advantages of the
RBF kernel are the following: (1) Radial basis function can
be applied in a wider scope. It is not restricted to the number
of samples and the dimension of features. (2) The RBF can
map a sample to a higher dimension space, and linear kernel
function is a special case of RBF. That is, linear kernel func-
tion can be replaced by RBF. (3) Compared with the polyno-
mial kernel function, RBF needs to determine fewer
parameters, which can affect complexity of functions. In
addition, when the order of the polynomial is high, the ele-
ment value of kernel matrix will tend to infinity or to infini-
tesimal. Radial basis function can reduce the difficulties of
numerical computation. For the reasons given above and
the result in experiments 4.2, we choose RBF as SVM kernel
function to get better classification performance.

34 | Scaling

Attribute data are easily affected by the data scaling. Support
vector machines model effectiveness will be affected if the
data is not scaled right. To minimize the data scale effect
and improve the speed of classification, we rescaled the data.
Data scaling means to convert attribute data into a smaller
scale range using certain algorithms. It can ensure convenient
data processing and speed up the program convergence.

To scale data mapping attributes to a smaller range
according to the certain rules, we use “min-max” scaling to
linearly scale each attribute to the range of [—1,1], namely,

/ X;j— minX; . . '
Xij = m (mlan<XU< maxXij), which le =—-1,
if X;j=minX;, X; =1; if X;;= maxXy, X;; is the attribute

value for the jth sample from the ith index, Xij' is the new
attribute value for the jth sample from the ith index, minX;
is the smallest attribute value of all samples that belong to
the ith index, and maxXj; is the largest attribute value of all
samples belonging to the ith index. Scaling is the first step
of applying SPP-SVM, and the original data will be changed
from here. We use the following methods to scale the original
data:

1. We scale the original data with each dimension instead of
each sample. Because the dimension of each sample is
different, scaling each sample will make the sample's
attribute of lower magnitude to be 0 when the magnitude
was in great disparity. This will cause the loss of the
original information. Since the magnitude is the same
for the same dimension, we scale the data with each
dimension. This can avoid the situation where lowest
magnitude of each sample's attributes is always 0.

2. We put the training set and the test set together to scale.
If the training set is scaled first (in each dimension), then
the scaling mapping is recorded. In this mapping record,
the maximum data value of a dimension is n. When a test
set is scaled by this mapping, this will lead to a hypoth-
esis that the maximum data value of this test set

dimension is not more than n. This hypothesis is not rea-
sonable. So to avoid this problem, we put the training set
and the test set together to scale. And the maximum and
minimum data values for each dimension are searched
from the training set and test set.

As we know from the above, (1) scaling can avoid too
large range of some feature values and too small range of
others, and (2) scaling effectively avoids the difficulty of
numerical calculation because of calculating inner product
to compute the kernel function.

3.5 | Feature extraction

Principle component analysis*** is a feature extraction tech-

nique,®> which rotates the original eigenvector coordinate
system and selects the maximal variance vector to build a
new coordinate system. The original feature sets are mapped
to the lower dimensional space to obtain the essential feature
of the original samples.

Assume that among the original samples X =[xy, ..., xy4]
T= [X(1)s -5 Xmyl, the eigenvectors are X;=[xjj, ..., X,]
(i=1,2,..D), and the samples Xq =[x, ...,x,-d]T
(=12, ....n). If Yy=apXi+apXo+ ...appXp (ai>
+an’+ ... +a;p’=1), then Y, is the dth principle
component, and its variance is at the maximum on the Y,
direction. Each principle component is independent. To meet
the principle component requirements, we need to solve the
following optimization problem as in Equation 5:

maxalTZal sit. ajla; =1. 5)

After PCA algorithm dimension reduction, the principle
component features are statistically irrelevant. The inter-
feature redundancy is reduced. Therefore, PCA can solve the
curse of dimensionality effectively, reduce over fitting, and
increase the generalization of the SPP-SVM model.

3.6 | Parameters optimization for kernel function

The parameters of kernel function have a very important
effect on the performance of the SVM classifier. At present,
the selection of optimal parameters based on SVM is usually
achieved from a large number of experiments. On the basis of
SPP-SVM model, we propose an automatic approach to
search for the optimal working parameters of kernel function
automatically using an improved PSO?° algorithm. The opti-
mal C and y are automatically calculated. This method does
not need to traverse all the parameter points, and the inertia
weight coefficient is adaptive. The method extracts a certain
number population from random solutions and ultimately
produces SPP-SVM optimal parameters according to the
specific rules of operation, shown as the following:
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1. Particle swarm initialization. The dimension of the solu-
tion space is defined as D. Randomly generate number of
n particles, which are defined as X={x, ...
The position vector of the particles is x;=(x;;, - . .,
Xiks - - - »Xip}, and the velocity vector of the particles is

., Vin}.

2. Set the inertia maximum weight as @,y minimum
weight as @, learning factors as ¢; and ¢,, maximum
velocity of particles as vy, current evolutional genera-
tion as m, and maximum evolutional generation is #72,,,.
Initialize individual and global extreme before the first
iteration.

s Xiy oo 9-xn}'

Vi=Wits - o5 Viks - -

3. Calculate accuracy fitness value f (x;) of each particle in
the particle swarm.

4. Compare the particle's individual fitness value with the
individual extreme fitness value. If the individual fitness
value is better than the individual extreme fitness value,
replace the individual extreme fitness value with the
individual fitness value.

5. Compare the particle's individual fitness value with the
global extreme fitness value in the particle swarm. If
the individual fitness value is better than the global
extreme fitness value, replace the global extreme fitness
value with the individual fitness value.

6. Recalculate the particle position vector x; and the veloc-
ity vector v; in the particle swarm.

7. If the iteration number of algorithm reaches the max
evolutional generation my,,s, then end the algorithm
and output the global optimal solution. Otherwise, the
algorithm will jump back to Step 3 and continue the next
iteration.

The inertia weight is the most important parameter in the
parameters which affect the performance of the PSO algo-
rithm.>” A larger @ can improve the global search ability,
and a smaller @ can improve the local search ability of the
algorithm.?®° To balance the global search ability and local
search ability of PSO, we adopt the nonlinear dynamic inertia
weight coefficient @ (Equation 6). We set objective function
value (fitness value) of the particle as f, average objective
function value of all the particles as f,, and minimum objec-
tive value of all the particles as f,,;,. Parameter @ changes
with the objective function value of the particle, so w is adap-
tive. When the objective value of each particle tends to be
uniform or locally optimal, the inertia weight is increased;
when the objective value of each particle is scattered, the

inertia weight is decreased. Meanwhile, the objective func-
tion value is better than the average objective function value
of the particle, which corresponds to the @ is smaller, and
the particle is retained. The objective function value is poorer
than the average objective function value of the particle,
which corresponds to the w is larger, and makes the particle
closer to the better search area, and vice versa.

' (a)max—wmin)x(f_fmin)
w = @min favg _fmin

®max, f>favg

afsfavg ) (6)

4 | EXPERIMENTAL PERFORMANCE
EVALUATION

4.1 | Datasets

In this paper, we used the Andrew Moore?® datasets, which
consisted of 10 separate subdatasets each from a different
period of the 24-hour day. The day trace was split into 10
blocks of approximately 1680 seconds. Each subdataset was
represented by a data text file that included tens of thousands
of data lines. Each line represented a traffic flow. The infor-
mation is derived from packet header information.

To reduce the imbalance of the data, we deleted the traffic
flows of games and interactive, which the samples were very
few. And we extracted samples randomly within 3000 from
every subset to build the new datasets. The datasets included
24 897 samples as in Table 1. The generation process of the
training set in subsequent experiments is as follows:

The traffic class has been derived using a content-based
analysis. The content-based classification process is
described in 1 study.?® We used the LibSVM™ and converted
original data from arff to csv data format. Then, we labeled
the data. We labeled 10 traffic classes from WWW to ser-
vices with integers from 1 to10. For example, WWW's label
is 1 in training set. Finally, to separate training set and test set,
we have chosen randomly 50% of unbiased data to form a
training set, and the remaining 50% is used as a test set.

4.2 | Kernel selection

We transformed the data format into libsvm, took half of the
sample datasets as training set, and the rest as test set. We
compared the traffic classification performance of 4 different
kernel functions based on SVM. Result shows in Table 2.
Linear and polynomial kernel's performance are better, but

TABLE 1 Datasets
Traffic class WwWw Mail FTP-control FTP-pasv Attack P2pP Database FTP-data Multimedia Services
Representative HTTP and Pop2/3, FTP FTP worm Kazaa, Postgres, FTP Voice X11,
applications HTTPS smtp, and and virus BitTorrent, sqlnet, oracle, and video dns, ident,
imap and Gnutella and ingres streaming and ntp
Samples of flows 2999 2999 2990 2989 1793 2391 2943 2997 576 2220
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TABLE 2 Classification accuracy (%) of 4 different kernels based on SVM classifiers

Two-class SVM

Classifier Www Mail FTP-control FTP-pasv  Attack P2P Database FTP-data Multimedia Services Multi-class SVM
Linear 99.9036  87.4839 12.01 30.1816 88.6166  52.0566 44.2561 67.0389 64.8538 77.3618 87.5803
Polynomial  99.7269  95.5174 75.0321 12.0019 86.8011  84.8249 11.8172 99.4457 95.9672 99.0681 73.9557
RBF 87.9579  88.1748 88.0141 87.9981 92.794 90.4804 88.3194 88.3355 97.6944 91.5087 12.4518
Sigmoid 87.9499  82.222 87.982 87.9981  92.794  87.5884  88.1668 87.9579 97.6864 91.0749 12.0341

Abbreviations: RBF, Radial basis function; SVM, support vector machine.

their two-class performance is quite unstable, and some
flows' classification accuracy is lower than 15%. Radial basis
function kernel's*' classification accuracy is higher than sig-
moid kernel's, and its two-class performance is very stable.
Furthermore, the linear kernel cannot handle the case when
the relation between class labels and attributes is nonlinear.
The polynomial kernel has more hyperparameters than the
RBF kernel. The sigmoid kernel behaves like RBF for certain
parameters.

All analyses show that the RBF kernel nonlinearly maps
the samples into a higher dimensional space. It is suitable
for various conditions, and the required parameters are less.
Therefore, we use RBF kernel.

4.3 | Scaling

The average accuracy of two-class SVM classifier with RBF
kernel is more than 85%, while the accuracy of multi-class is
only 12.45%. Scaling of datasets improves the performance
of the classifier. We train the datasets with RBF kernel, which
parameters are default (C = 1 and y = 0.004). After scaling,
the attribute values mapping is [—1, 1]. All traffic flows'
accuracy of two-class is more than 94%, and the accuracy
of multi-class is improved from 12.45% to 77.76%. Elapsed
time is significantly shorten by 83.9% (CPU frequency is
2.27 GHz). Table 3 shows the classifier performance on the
original datasets and the scaling datasets.

4.4 | Feature extraction

After scaling, the performance of two-class classifier is bet-
ter, while the performance of multi-class classifier is not
ideal. We propose the PCA method to reduce dimension.
We set the threshold (the percentage of original features) at
90%. The two-class classification performance on scaling
datasets (24 897 samples) and unbiased small scaling datasets
(5000 samples) are shown in Figure 2. The multi-class

TABLE 3  Classifier performance on original and scaling data

classification performance on scaling datasets and unbiased
small scaling datasets (5000 samples) are shown in Figure 3.

Dimension decreased greatly of two-class after feature
extraction on the scaling and unbiased small scaling datasets.
All of the classification accuracy of each threshold is over
95%, except P2P which is over 92%. At this time, the accu-
racy is close to the original dimension. The average accuracy
of unbiased small scaling datasets is only 1.5% lesser than the
average accuracy of scaling datasets, which is shown in
Figure 2. So, the unbiased small scaling datasets can be used
to replace the scaling datasets for classification prediction.

The accuracy of multi-class on unbiased small scaling
datasets is noticeably higher than on scaling datasets obvi-
ously, which is shown in Figure 3. And the performance is
the best when threshold is set as 94%. At this time, the feature
dimension is reduced to 20 dimension, which is 89.8% lower
than the original one. Accuracy reaches 86.48%, which is
8.72% higher than on the scaling datasets. Elapsed time is
92.8% shorter than it on the scaling datasets. Feature extrac-
tion on the unbiased small scaling datasets is more suitable
for real-time traffic classification.

We further clarified which are the relevant traffic features
we have obtained by PCA. That is, we get a feature subset,
which features have maximum relevance to the class and
minimum redundancy between them. We have identified a
key feature subset through the Correlation-Based Feature
Selection (CFS) algorithm and the genetic search strategy.
Correlation-Based Feature Selection algorithm evaluates the
worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of
redundancy between them. Subsets of features that are highly
correlated with the class while having low intercorrelation are
preferred. We used the default parameters. The population
size is 20, the probability of crossover is .6, the number of
generations is 20, the probability of mutation is .033, and
the random number seed is 1. Then, we obtained an 8 dimen-
sion feature subset. The result of feature selection 10-fold
cross-validation is shown in Table 4. In the 20 dimension

Two-class
Classifier Www Mail FTP-control FTP-pasv Attack P2P  Database FTP-data Multimedia Services Multi-class
Accuracy (%) on original data 87.9579 88.1748 88.0141 87.9981 92794 90.4804 88.3194  88.3355 97.6944 91.5087  12.4518
Accuracy (%) on scaling data  98.7789 98.9878 98.9798 99.6546  97.5016 94.0312  99.036 99.8233 99.2449 98.6102  77.7555
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features we obtained from PCA, 1, 2, 3, 4, 5, 7, 8, and 11
dimension features have maximum relevance to class and
minimum redundancy among them. They are the key feature
subset of PCA feature extraction. At this time, classification
accuracy based on 8 dimension features subset reaches
83.84%, which is very close by PCA. And the feature dimen-
sion is 60% lower than the dimension by PCA feature extrac-
tion only. Feature extraction and feature selection can be
performed under the specific situation during traffic classifi-
cation. Feature extraction by PCA can get higher accuracy of
classification. Feature selection by CFS after PCA can obtain
the key feature subset and the lower feature dimension.
Through CFS feature selection, we further clarified which
are the relevant traffic features we have obtained by PCA.

4.5 | Parameters optimization

The SVM training model usually can not get the best training
result of the default parameters. We derived the optimal
working parameters C and y of kernel function based on
improved PSO algorithm. The classifier's performance is

T
100

FIGURE 2 Accuracy (%) of two-class classifier
using PCA feature extraction on the scaling
datasets and unbiased small scaling datasets

better when threshold is set as 94% for the PCA feature
extraction. The experiment shows that when threshold is at
94%, the classification performance is also ideal during the
parameters optimization by PSO. Partical swarm optimiza-
tion's initial parameters: c1 is 1.5, ¢2 is 1.7, termination iter-
ation is 200, and population is 20. The result of parameters
optimization by PSO on threshold 90%-100% is shown in
Table 5. The SPP-SVM model includes the procedure of scal-
ing, feature extraction based on PCA, and parameters optimi-
zation based on improved PSO.

According to Figure 3 and Table 5, performance is the
best when threshold is at 94% of SPP-SVM. As a result, the
number of dimensions is 20, the best ¢ is 40.1731, and the
best y is 0.01. To prevent over fitting, we inspected the opti-
mal parameters ¢ and y. The smaller the value of ¢, the
smaller the penalty of the experience error. That is, the
smaller the complexity of the learning machine, the greater
the risk value, and vice versa. If ¢ is oo, it means that all
the constraints must be satisfied, which means that the train-
ing samples must be classified accurately. When c exceeds a
certain value, the complexity of the model reaches the
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TABLE 4 Feature selection 10-fold cross-validation (stratified)
Feature dimension by PCA 1 2 3 4 6 7 8 9 10
Number of folds (%) 9 (90%) 10 (100%) 10 (100%) 10 (100%) 10 (100%) 0 (0%) 9 (90%) 7 (70%) 1 (10%) 0 (0%)
Feature dimension by PCA 11 12 13 14 15 16 17 18 19 20
Number of folds (%) 10 (100%) 1 (10%) 0 (0%) 1 (10%) 0 (0%) 0(0%)  0(0%) 0 (0%) 0 (0%) 0 (0%)

Abbreviation: PCA, principal component analysis.

TABLE 5 Result of parameters optimization by PSO on threshold 90%-100%
Threshold (%) 90 91 92 93 94 95 96 97 98 99 100
Dimension 14 15 16 18 20 23 26 31 39 54 196
Accuracy (%) 91.6 91.76 91.96 91.96 92.12 91.76 91.72 92 92.16 91.92 92.52
¢ 69.8035 48.39 61.1767 60.7706 40.1731 25.1315 27.4772 30.2797 71.5069 31.9239 224321
4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Abbreviation: PSO, particle swarm optimization.
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maximum value of the feature subspace. Then, the model is
over fitting. To verify the SPP-SVM model, we amplify and
reduce the value of ¢. When c is between 1 to 100, the num-
ber of boundary support vectors is monotone decreasing but
non-0. When ¢ exceeds 100, the number of boundary support
vectors decreases rapidly to O (¢ = 200). That is, when ¢
exceeds 100, all the training samples are classified accurately,
resulting in over fitting. Therefore, when ¢ = 40.1731 and
y =0.01, it does not have an over fitting, and they are the best
parameters combination. Meanwhile, the best multi-class
accuracy is 92.12%, the best average two-class accuracy is
over 97%, and the shortest elapsed time is less than 1 second,
which is shown in Table 6. Even with small samples, SPP-
SVM model can get higher accuracy and lower elapsed time
than traditional SVM model.

4.6 | Performance comparison

Performance comparison of SPP-SVM's each stage is shown
in Figure 4, where S-SVM is the scaling stage; SP-SVM is
the scaling and feature extraction stage (threshold = 94%);
and SPP-SVM is the scaling, feature extraction, and parame-
ters optimization stage.

The performance of two- and multi-classes are improved
visibly on S-SVM.

Accuracy is close to the original dimension on SP-SVM,
but dimension is lower and elapsed time is shorter.

Accuracy is the best, and the elapsed time is shortest on
SPP-SVM.

Performance comparison of SPP-SVM with different sam-
ple sizes is shown in Figure 5. The result shows that, only with

TABLE 6 Accuracy (%) and elapsed time(s) of two- and multi-class SPP-SVM (threshold = 94%, dimension = 20, ¢ = 40.1731, and y = 0.01)

Traffic class Www Mail FTP-control FTP-pasv  Attack P2P Database FTP-data Multimedia Services Multi-class

Accuracy (%)  99.84 99.92 99.76 99.64 98.6

97.6 99.92 99.92 97.36 99.96 92.12

Elapsed time(s)  1.740768  0.710184 0.589454 0.763306  0.625813  0.711868  0.641928  0.551276 0.677295 0.742169  0.772112
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FIGURE 4  Accuracy (%) and elapsed time(s) of
SPP-SVM each stage. SVM, support vector
machine
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SPP-SVM with different sample size

a few hundred samples, SPP-SVM model can get higher over-
all accuracy and less elapsed time than with larger samples.

We also compare the classification performance of SPP-
SVM to Naive Bayes, k-NN, and RBF Network, respectively,
with weka.*> The comparison about classifiers above is
shown in Figure 6. The performance of SPP-SVM is the best
among the above classifiers, especially on the small datasets.
Only with a few hundred samples, SPP-SVM's two-class
average accuracy is up to 99.08%, which is 10.8% higher than
Naive Bayes's, 11.64% higher than RBF Network's, and
7.64% higher than k-NN's. SPP-SVM's multi-class accuracy
is 94.44%, which is 6.44% higher than Naive Bayes's, 15.69%
higher than RBF network's, 12.14% higher than k-NN's, and
its average elapsed time is no more than 1 second. SPP-SVM
is an effective model, which can classify the traffic flows in
real time accurately.

We also inspected the classification performance of SPP-
SVM on the other datasets. We applied the SPP-SVM model
on the CAIDA dataset.** The CAIDA Internet traffic was col-
lected from a different period of the 3 days. In parallel to DPI

classification labels, 61 variables that are useful for
nonpayload traffic classification methods. We deleted the
traffic flows of unknown. And to reduce the imbalance of
the data, we deleted the traffic flows, which the samples were
very few. The dataset is shown in Table 7. And we extracted
samples randomly within 50 from every subset (total of 650
samples) to build the small unbiased new training dataset.
We applied the SPP-SVM model to scale data, extract fea-
tures, and optimize parameters. Classification performance
is the best when threshold is at 96%. As a result, the dimen-
sion is 16, the best ¢ is 60.01, and the best y is 0.01 on
SPP-SVM. Meanwhile, best average accuracy is over
95.23%, which is shown in Table 8. SPP-SVM can also
achieve good classification performance on other datasets.

S | DISCUSSION

In this section, we provide some discussions on the model
performance and related approaches.
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TABLE 7 CAIDA dataset
Traffic class HTTP DNS ICMP SSL MSN BitTorrent NTP NetBIOS Mail_POP
Samples of flows 33667 22814 1318 2671 190 61 81 58 64
Traffic class Windowsmedia Gnutella Oscar DirectDownloadLink
Samples of flows 46 108 126 45
Abbreviation: CAIDA, Cooperative Association for Internet Data Analysis.
TABLE 8 Accuracy (%) on SPP-SVM (threshold = 96%, dimension = 16, ¢ = 60.01, and y = 0.01)
Traffic class HTTP DNS ICMP SSL MSN BitTorrent NTP NetBIOS Mail_POP
Accuracy (%) 92.5 99.375 99.9 92.1875 93.125 97.19 96.5625 95.625 92.50
Traffic class Windowsmedia Gnutella Oscar DirectDownloadLink
Accuracy (%) 99.6875 92.188 94.0625 93.125
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TABLE 9 Related approaches

Approach of SVM

Training Set

Feature Selection

Parameters Optimization

Classification Performance

SPP-SVM (proposed in this paper)
Este et al'?

Yuan et al'?
Kim et al'’
Khan L et al'®

Sena et al*?

Unbiased, a few hundred samples
Unbiased, a few hundred samples
Unbiased, 1400 samples
Unbiased, 1000 flows

Biased, randomly

Unbiased, 15% flows

PCA

No

Sequential forward
CFS

No

No

Improved PSO
Grid-search
Grid-search
No

Experience

Grid-search

98.6%

98.8%

97.17%

More than 95%

69.8%, shortest training time

More than 95%

Abbreviation: CFS, content filtering service; PCA, principal component analysis; PSO, particle swarm optimization; SVM, support vector machine.

5.1 | Performance

On SPP-SVM, we first map the attributes into smaller inter-
vals, avoid the dimensional effects, and accelerate the conver-
gence of the programs. After scaling, the average accuracy of
two-class is 8.34% higher and the accuracy of multi-class is
65.3% higher than the traditional SVM. The elapsed time of
two-class is 97.06% shorter, and the elapsed time of multi-
class is 83.98% shorter than the traditional SVM. We extract
features based on PCA. When threshold is set at 94%, dimen-
sion is 20, average accuracy of two-class is 7.57% higher than
its of traditional SVM, and accuracy of multi-class is 61.32%
higher than its of traditional SVM. The performance is close
to the scaling datasets without feature extraction, and the
original datasets can be replaced by the unbiased small sam-
ples datasets for training. Finally, we derived the optimal
parameters C and y based on PSO automatically.

On SPP-SVM model, average accuracy of two-class is
98.6%, which is 15.54% higher than that of the traditional
SVM model. Accuracy of multi-class is 92.12%, which is
79.6% higher than that of the traditional SVM model. Dimen-
sion is 20, which is 89.8% lower than that of the traditional
SVM model. Average elapsed time is less than 1 second,
which is 99% shorter than that of the traditional SVM model.

Compared with others' typical supervised algorithms, the
SPP-SVM's average accuracy of two-class is 11.25% higher
than that of Naive Bayes, 13.29% higher than that of RBF
Network, and 8.45% higher than that of k-NN. Accuracy of
multi-class is equivalent to that of k-NN, 4.49% higher than
that of Naive Bayes, and 5.42% higher than that of RBF
Network.

5.2 | Related approaches

Table 9 compares the related approaches under 4 properties,
ie, the training set, the feature selection, parameters optimiza-
tion, and the performance of classification. The proposed
approach, SPP-SVM model, has the advantages over other
related approaches. Feature extraction by PCA can not only
solve the curse of dimensionality effectively but also avoid
deleting more information. In Table 9, the related approaches
mostly used specific feature selection approaches. These
approaches are mainly to find the smallest contribution fea-
ture and remove the feature. However, in practice, many fea-
tures depend on each other or depend on the underlying

unknown variables. A feature can be represented by a combi-
nation of multiple types of information. Removing such a
feature would remove more information. Parameters optimi-
zation based on improved PSO is a heuristic-algorithm. It
does not need to find the parameters in a wider range, it does
not need to adjust the step gradually, and it does not need to
traverse all the parameters points in the grids. From this
perspective, the SPP-SVM model is much more effective.

6 | CONCLUSION

In this paper, we have proposed a new accurate network
traffic classification model which is based on SVMs. A com-
prehensive analysis on the model framework has been done.
The model is capable of solving the curse of dimensionality,
reducing computation complexity, and searching for the opti-
mal working parameters of kernel function automatically.
Numbers of experiment results from 2 traffic datasets prove
that the model can get the superior performance with hun-
dreds of training samples and is more suitable for real-time
traffic classification.

Besides, the proposed model can be applied to traffic
classification related feature extraction and parameters opti-
mization. Further research and improvement on SVM multi-
classifier are ongoing.
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