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Abstract-This paper presents a method to autonomously 
adjust the operating point of amplifiers in a cascade using an 
approach based on machine learning. The goal is to smoothly 
adjust the gain of each amplifier in the cascade in order to reach 
predefined input and output power levels for the entire link, 
aiming to minimize both the noise figure and the gain flatness of 
the transmission system. The proposal uses an iterative method 
and performs feedforward and backward error adjustments 
based on local information. The experimental results indicate that 
our proposal can optimize the performance of the link ensuring 
predefined input and output power levels, which is important in 
a network scenario. As an example, our proposal was capable to 
define the gain of 6 amplifiers returning a link with a noise figure 
equal to 30.06 dB and a gain flatness equal to 5.26 dB, while 
maintaing the input and output powers around 3 dBm with an 
error lower than 0.1 dB. 

Index Terms-Optical Amplifiers, Noise Figure, Machine 
Learning, Self-adaptation, Backpropagation. 

I. INTRODUCTION 

The growth of the traffic demand generated by recent 
released Internet video-on-demand and cloud computing ser­
vices has driven optical networks to evolve by incorporating 
advanced modulation formats and reconfigurable devices. In 
this new scenario, it is desirable to have devices that can self­
adapt their operating points considering different situations 
aiming to achieve an acceptable Quality of Transmission 
(QoT) for every active lightpath of the network. 

Some adaptive and cognitive approaches were recently 
proposed to simplify and automate the configuration of devices 
and networks [1]-[4]. These approaches comprise on the 
fly adjustments of the operating point regarding the past 
experiences. In general, these configurations are performed 
based on transmission metrics, such as Noise Figure (NF), 
Optical Signal to Noise Ratio (OSNR), Frequency Response 
Flatness (FRF) or Bit Error Rate (BER). These metrics are 
important since they are directly related to the QoT of the 
lightpaths. 

Optical amplifiers are often deployed in optical systems and 
have a crucial impact on the overall QoT of the lightpath. 
It occurs mainly because the Average Gain, NF and Gain 
Flatness (GF) of the amplifier depend on the total input power 
of the amplifier. The Erbium-Doped Fiber Amplifier (EDFA) 
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is the most used type of amplifier in optical communications 
systems. EDFAs add noise and have a non-flat gain spectrum. 
The NF and the GF of the amplifier depend on the operating 
point, which also depends on internal parameters, such as the 
pump power. Moreover, the input power can vary during the 
network operation, specially in dynamic optical networks, in 
which lightpaths can be added or dropped along the time. 
Therefore, the proper adjustment of the operating point of the 
amplifiers can lead to better QoT of the lightpaths. 

The adjustments of the operating point of the devices can be 
done in two different manners: using a single step, in which the 
device adjusts its parameters toward its own best performance 
point, or using an iterative approach, which allows a smooth 
variation of the operating point of the devices aiming to 
improve the QoT of the entire lightpath. It is easier to adjust 
the operating point of the amplifiers using a single step based 
on static information, such as NF and GF. In this line, one ap­
proach was recently introduced in [5]. This proposal presented 
an scheme to change the EDFA operating point in a cascade 
using a single step method based on power masks in a feed­
forward manner. This concept was evaluated in terms of BER 
measurements for a dynamic optical link with four C-band 
channels constrained by some power impairments. Although 
this approach presented good preliminary results, it can not 
guarantee the best link performance and can not maintain the 
input and output powers of the link in a predetermined level, 
which is important to apply it in network scenarios. 

In this paper, we present a novel approach for self-adaptive 
amplifiers based on a machine learning process, that varies the 
operating point according to the power masks of the amplifiers 
through an iterative update process. The operating point of 
each amplifier is updated locally with a controlled step using 
the power mask of the amplifier and the current input and 
output powers. The step decreases along the iterations to 
guarantee convergence. The update process is performed in 
a loop through the cascade of amplifiers in a recursive way, 
using a loop of feedforward and backpropagation adjustments, 
aiming to obtain the global optimization of the entire lightpath. 
Our proposal aims to attend to the input and output powers 
restriction. 

The remainder of the paper is organized as follows. In 



Section II and III, we present some basic concepts regarding 
adaptive amplifiers and machine learning, respectively. Section 
IV presents our proposal for iterative self-adaptive optical 
amplifiers. Section V and VI present the simulation setup using 
data from real EDFAs and some results, respectively. Some 
conclusions and future works are presented in Section VII. 

II. ADAPTIV E  AMPLIFIER 

The adaptive amplifier concept is applied to the EDFA in 
order to adjust its operating point when some input power 
change occurs. This adjustment aims to achieve the best trade­
off between amplifier NF and GF. The alteration of the 
operating point of adaptive amplifier is based on a previous 
characterization process, in which NF and GF are measured 
for some operating points inside the power mask [6]. Fig. 1 
presents an example in which the objective space with the op­
erating points measured previously are depicted as a function 
of the NF and the GF of the amplifier. The objective function 
values are coded in the right color bar. 
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Fig. 1: Objective space illustration with some operating points 
for a specific input power. 

Fig. 1 also illustrates a metrics used in this paper, the 
distance di of the operating point to the origin in the objective 
space. It gives a general quality measurement and for this 
paper it is given by (1). di is deployed in order to simultane­
ously optimize NF and GF. In this case, the adaptive amplifier 
selects the operating point that has the lowest distance di to 
be the target amplifier operating point. 

(1) 

III. MACHINE LEARNING 

Machine Learning is a computational intelligence subfield 
that aims to provide self-adaptation capabilities to computa­
tional processes through learning methods [7]. In this context, 
Learning regards to complex pattern recognition and intelligent 
decision making. Machine Learning has been widely applied 
in different areas [8]-[10]. 

One of the most traditional learning techniques is the delta 
rule. This rule was developed by Widrow and Hoff in 1969 
[11]. It is an example of a supervised learning that uses the 
method of gradient descent to minimize the error between 
the actual output of the system and the desired output. The 

most known application of this technique is to train ADALINE 
neural networks [12]. The delta rule is given by the formula 
depicted in (2). 

(2) 

in which the a is the learning rate, Wij is the weight between 
the neuron i and the neuron j, di is the desired output, Yi is 
the current output, x j is the input variable value and l' (neti) 
is the derivative of the output function. 

If the output function is linear, its derivative is equal to 1. In 
this case, equation (2) can be simplified and one can calculate 
the new value for the weight between the neuron i and the 
neuron j using (3). 

Wij(new) = wij(old) + a(di - Yi)Xj. (3) 

Backpropagation (BP) is another algorithm that is used to 
train neural networks. This algorithm is a generalization of 
the delta rule, which is used to train a Multi-Layer Perceptron 
networks (MLP). This generalization was made because it is 
necessary to propagate the error recursively through the layers 
of the MLP. BP is basically divided in two steps. In the first 
step, the values are propagated from the input to the output 
(feedforward process), and then the error between the desired 
output and the current output is calculated. In the second step, 
the errors are propagated recursively from the output to the 
input (backward process) and the weights of the network are 
updated. 

IV. PROPOSED ApPROACH 

Our approach is based on the backpropagation algorithm, 
but we use the propagation of the error in two directions 
(feedforward and backward) to update the operating point 
of the amplifiers in the cascade aiming to reach predefined 
power levels in the input and output of the link. We defined a 
maximum step to adjust the operating point of the amplifiers in 
order to find the configuration for every amplifier that returns 
the best performance for the entire link. Our hypothesis is that 
the best operating point of the amplifier is not necessarily the 
best option for the entire link. Therefore, an iterative method 
may allow a compromise between the best amplifier operating 
point and the best operating point for the neighbor amplifiers. 

The pseudocode of the proposed approach is depicted in 
Algorithm 1. Some specific parts of our proposals are detailed 
in the subsections IV-A, IV-B, IV-C and IV-D. Pin(i) and 
Pout (i) are the input and output powers of the amplifier i, 
respectively pdesired and pdesired are the predefined input . tn out 
and output power levels for the link. One can observe that 
we have a main loop that contains two inner loops, one for 
the feedforward correction and another one for the backward 
correction. This main loop is executed a predefined number of 
times and each execution is performed with a step. In Machine 
Learning, it is quite common to use annealing processes to 
refine learning and increase its exploitation capability along 
the time. Therefore, we decrease the step along the iterations to 
guarantee convergence to a good configuration for the cascade. 



Algorithm 1: Pseudocode of the Proposed Approach for 
the Self-Adaptive EDFA. 

Initialize the amplifiers (detailed in Subsection IV-A); 

ETTOTinput = ETTOToutput = 0; 
while The total number of iterations was not reached do 

foreach Amplifier 1 to n - 1 do 
if First amplifier then 

L P::t(l) = P���(l) - ETTOTinput; 
else 

Select a set of amplifier operating points with Pin 
near to the Pin of the current amplifier (detailed in 
Subsection IV-B); 
Select the target operating point, within this set, 

that has the lowest di as shown in equation (1); 
Calculate the step (detailed in Subsection IV-C); 
P::t(i) = P���(i) + step; 

Define the new Gain, NF and GF of this 
amplifier (detailed in Subsection IV-D); 
Calculate the input power of the next amplifier 
considering the losses using 
Pin(i + 1) = P:::tW(i) - Loss(i) ; 

ETTOToutput = Pout(n) - p:;:,rred; 
foreach Amplifier n to 2 do 

if Last Amplifier then 

L Pi�ew(n) = Pi�d(n) - ETTOToutput; 
else 

Select a set of operating points with Pout near to 
the Pout of the current amplifier (detailed in 
Subsection IV-B); 
Select the target operating point, within this set, 
that has the lowest di as shown in equation (1); 
Calculate the step (detailed in Subsection IV-C); 
Calculate the output power of the next amplifier 
considering the losses using 
Pi�ew(i) = Pi�d(i) + step; 

Define the new Gain, NF and GF of this 
amplifier (detailed in Subsection IV-D); 
Pout(i - 1) = P[:,(i) + Loss(i) ; 

ETTOTinput = PineO) - Pi�sired; 
Return the gain of each amplifier. 

A. Initialization Strategy 

All amplifiers are initialized with the average gain. This 
average gain is calculated according to (4) 

G 
_ L�+l Loss(i) 

a - , 
n 

(4) 

where Loss( i) is the link loss between the amplifier i and the 
amplifier i + 1, and n is the number of amplifiers. 

B. Selecting the Reference Amplifier Operating points 

To select the reference amplifier operating points, the input 
power Fin (or the output power Fout in the backward process), 
of the current amplifier is used to select points in the power 
mask that has values of Fin (or Fout in the backward process) 
near to the current operating point. Suppose a power mask that 
contains information about the amplifier with a resolution of 
0.5. Therefore, an amplifier operating with Fin = 0 dB can 

only select the following reference points Fin = -0.5 dB and 
Fin = 0.5 dB. In our case, we use an interpolator to define 
the power mask values. One must observe that the reference 
operating points must be within the objective space in Fig. 1. 

C. Calculating the Step Size 

The calculation of the step size is the most important 
procedure in the optimization process. Our approach uses an 
annealing concept [13] to change the size of the step along 
the iterations. The mainly idea is to decrease the step in order 
mitigate a selfish behavior of the amplifier. The operating 
point of the amplifier is adjusted aiming at reaching the target 
amplifier operating point (i.e. the point with the lowest di in 
the set of reference operating points). The step decreases along 
the iteration according to (5). 

where the Fin (i) is the input power of the amplifier i and 
Fin (ref) is the input power of the reference operating point. 
The same equation is used to update the output power by 

substituting Fin by Fout. 
The parameter T is the temperature factor of the annealing 

process. T is evaluated according to 

T = 

iteration current 

iterationtotal ' (6) 

in which iterationcurrent is the number of the current it­
eration and iterationtotal is the total number of iterations. 
Therefore, T will increase along the iterations, reaching T = 1 
in the last iteration. Thus, the step depicted in (5) will decrease 
along the iterations, reaching step = 0 in the last iteration. 

D. Defining the Metrics 

The proposed approach is guided by a fitness function that 
depends on the NF and the GF, and must be defined for 
any pair of input and output powers within the operating 
range. We can calculate this fitness function using the Power 
Mask. In general, the Power Mask is build with samples from 
a characterization process [6]. The characterization process 
generates a discrete space and sometimes the resolution is not 
suitable to tackle the selected target operating points. 

In order to overcome this limitation, we developed an 
interpolation method to generate a continuous Power Mask 
from the discrete data. We used a multilayer perceptron (MLP) 

neural network to accomplish it [14]. Fig. 2 represents the 
MLP architecture used in this work. The MLP has two inputs, 
the amplifier input power and amplifier output power, and 
returns two values according to the inputs, the NF and GF. 
This MLP has 4 neurons in the hidden layer, and was trained 
with the data of the power mask using the back propagation 
algorithm during 5,000 epochs. We observed from the study 
that the error in the interpolation process is lower than 0.1 
dB. We just used 4 neurons in the hidden layer because 
we observed that more neurons do not lead to a better 
performance. 



As a consequence of the novel interpolation method, we can 
use any value for the amplifier input power and the amplifier 
output power. Thus, we have continuous values for NF and 
GF to evaluate di according to equation (1). This new scenario 
in less restrictive when compared to the approach presented 
in [5]. 

P� 

p
o

� 

Fig. 2: MLP used to interpolate the points of the power mask. 

V. SIMULATION SETUP 

We used the same scenario presented in [5] to perform our 
simulations. This scenario considers 6 amplifiers. Amplifiers 
1 and 6 are boosters with maximum output power equal 
to 24 dBm. Amplifiers 2 and 4 are line amplifiers, which 
work as boosters and have maximum output power equal to 
2 1  dBm. The amplifier 5 are similar to amplifiers 2 and 4, 
but its maximum output power is 24 dBm. The amplifier 
3 is a line amplifier that works as a pre-amplifier and has 
maximum output power equal to 2 1  dBm. The losses between 
the amplifiers are: 17.22 dB (between amplifiers 1 and 2), 
28.19 dB (between amplifiers 2 and 3), 13 dB (between 
amplifiers 3 and 4), 22.58 dB (between amplifiers 4 and 5) 
and 28.74 dB (between amplifiers 5 and 6). 

The N F of the link is calculated according to the equation 
defined in [15]. This equation defines the noise factor of an 
amplifier cascade as: 

F2 FN 
F = Fl + -- + ... + , (7) 

GILl GILIG2L2 ... LN-I 
in which Fi is the noise factor of the amplifier i, Gi is the 
gain of this amplifier and Li is the loss of the span between 
the amplifiers i and i + 1. The noise figure is calculated from 
the noise factor according to (8): 

N F = 10log(F). (8) 

The GF of the link is obtained by calculating the arithmetic 
average of the GF of every amplifier in the cascade. 

We performed simulations varying the number of iterations 
of the optimization process in order to evaluate the best 
number of iteration to be used as the stop criterion. We also 
analyzed the influence of the input/output power restriction by 
performing simulations for different values of Pi�sired. In all 
cases we set pdesired equal to pdesired The rationale for this ' out 'Zn ' 
is to maintain the power levels when cascading links along and 
hypothetic network. 

VI.  RESULTS 

In this section we present the simulations results. The results 
are depicted in terms of the error regarding the predefined 
desired link input power (Errorinput), the error regarding the 

predefined desired link output power (Error output), the NF 
of the link and the GF of the link. 

A. Parametrical Analysis 

In this Subsection we perform a parametrical analysis 
considering the influence of the deployed number of iterations 
and the influence of the algorithm performance regarding the 
predefined desired link input and output powers. 

Table I shows the values for the errors and the metrics (NF 
and GF) for different numbers of iterations and Pi�sired 

= 

p::::,rred 
= 3 dBm. One can observe that 10 iterations is not 

enough to obtain low errors, specially for the input. On the 
other hand, it is not worth to use more than 50 iterations 
because the results are similar. Therefore, we will use 50 
iterations in the rest of the paper. 

TABLE I: Comparison of the Errors and the metrics for 
different number of iterations. 

Iteration Errorinput Erroroutput NF GF 

10 2.03 dB 0.37 dB 22.09 dB 4.08 dB 

20 0.19 dB 1.00 dB 27.93 dB 5.67 dB 

50 0.08 dB 0.06 dB 30.06 dB 5.97 dB 

LOO 0.03 dB 0.04 dB 30.06 dB 6.01 dB 

200 0.02 dB 0.01 dB 30.12 dB 5.98 dB 

One can observe from Table I that the NF of the link is 
lower for a lower number of iteration. In order to analyze the 
reason for this, we show in Figures 3a and 3b the values of NF 
and GF, and Errorinput and Error output, along the iterations 
for 50 iterations and Pi�sired 

= 3 dBm. As one can observe 
during the first iterations, the NF of the link is lower, but the 
link is not satisfying the input/output restriction. To obtain 
errors as low as 0.08 dB and 0.06 dB, the process drives the 
NF and GF to 30.06 dB and 5.97 dB, respectively. However, 
if the restriction is not required, one can achieve NF and GF 
around 18.8 dB and 3.2 dB, respectively (see iteration number 
7). 

It is also important to analyze if the proposal works for 
different values of Pi�sired. Table II shows the results for 
pdesired 

= 
pdesired equal to -3 dBm 0 dBm and 3 dBm t.n out ' . "  

One can observe that low errors were obtained in all cases. 

TABLE II: Comparison of the Errors and the metrics for 
different Input/output power levels. 

p�esired 
m Erroroutput Errorinput NF GF 

- 3 dBm 0.06 0.08 30.22 dB 6.11 dB 

o dBm 0.03 0.08 27.69 dB 5.22 dB 

3 dBm 0.06 0.08 30.06 dB 5.94 dB 

B. Comparison to the Previous Approach 

Table III shows the characteristics of each amplifier in the 
cascade returned by our approach, whereas Table IV shows 
the same information returned by the approach used in [5] for 
the same simulation setup. The link returned by the previous 
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Fig. 3: Evolution of (a) NF and GF, and (b) Errorinput and 
Error output. 

approach presents NF and GF equal to 22.3 dB and 3.55 
dB, but this approach does not take in consideration the 
input/output power restriction. The previous approach returned 
Errorinput = 0.19 dB and Erroroutput = 8.07 dB (regarding 
3 dBm), whereas our approach returned Errorinput = 0.08 
dB and Error output = 0 dB. It is important to observe that 
if the input/output power restriction is relaxed, we obtained 
N F = 18.8 dB and GF = 3.2 dB, Errorinput = 1.4 dB 
and Error output = 4.6 dB, which is better than the previous 
approach. 

TABLE III: Amplifiers characteristics returned by our ap­
proach. 

Pin (dBm) Gain (dB) Pout (dBm) NF (dB) GF (dB) 

Ampl 2.92 24.00 26.92 5.15 3.78 

Amp2 9.70 14.00 23.70 15.90 8.15 

Amp3 -4.49 14.00 9.51 6.61 4.81 

Amp4 -3.49 17.41 13.92 7.29 5.24 

AmpS -8.66 16.40 7.74 5.41 9.64 

Amp6 -21.00 24.00 3.00 5.64 4.18 

V II. CONCLUSION AND FUTURE WORKS 

We proposed in this paper a novel approach for self-adaptive 
EDFAs based on machine learning, that varies the operating 
point according to the power masks of the amplifiers through 
an iterative update process. The operating point is updated 
locally with a controlled step in order to avoid a selfish 

TABLE IV: Amplifiers characteristics returned by the ap­
proach proposed in [5]. 

Pin (dBm) Gain (dB) Pout (dBm) NF (dB) GF (dB) 

Ampl 2.81 21.00 23.98 5.69 1.53 

Amp2 7.21 14.00 20.96 15.49 8.37 

Amp3 -6.82 15.00 8.12 5.70 4.71 

Amp4 -4.95 24.00 19.14 6.30 2.42 

AmpS -2.97 23.00 20.06 4.64 3.75 

Amp6 -9.09 20.00 11.07 5.49 0.51 

behavior of the amplifier and minimize the Noise Figure and 
Ripple of the Frequency Response of the entire link. 

The results show that our approach is capable to define the 
gain of the amplifiers, considering the restriction in which the 
input power and the output power of the link can be predefined. 
This restriction leads to an increasement in the Noise Figure 
and Ripple of the link, but can be obeyed if our approach is 
deployed. If this restriction is relaxed, we can obtain a better 
result when compared to the previous approach. However, this 
restriction is essential to network scenarios. 

For future works, we intend to add the energetic consump­
tion of the amplifier as another performance metrics and use a 
variable optical attenuator (VOA) in the output of the link in 
order to simplify the restriction regarding the desired output 
power level. 
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