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Abstract—As optical networks become more complex, the need
for in-line monitoring of more than just channel wavelength, power
and OSNR becomes compelling. In this paper we describe an asyn-
chronous delay tap sampling technique coupled with statistical ma-
chine learning that enables a single monitor to measure multiple si-
multaneous impairments on multiple formats. We demonstrate the
technique for simultaneous measures of CD and 1st order PMD on
a 40 Gbit/s NRZ-DPSK signal.

Index Terms—Asynchronous sampling, multi impairment moni-
toring, optical performance monitoring, polarization mode disper-
sion (PMD).

I. INTRODUCTION

R ECONFIGURABLE optical networks offer the potential
for significant operational savings through automated

path provisioning, enhanced fault management and optimiza-
tion [1]. However, realizing this potential requires a real time
picture of the optical impairments inside the network, and
their distribution. In addition to OSNR, these impairments
include PMD, four wave mixing, chromatic dispersion and
slope, reflections, laser noise, and both inter-channel and in-
terferometric crosstalk [2]. -factor and timing jitter are also
useful as measures of the effects of these impairments on signal
quality. In addition to fault diagnosis, monitoring is required for
feedback to tunable compensation elements and signal quality
assurances for networks carrying alien wavelengths.

Many techniques have been proposed to measure different
subsets of these impairments. These techniques can be broadly
classed as either spectrally- [3], [4] or sampling-based. The
former include the use RF tones and measurement of RF clock
power. These techniques are, however, format dependent. The
laboratory eye diagram is the most familiar sampling technique
for measuring signal quality and estimating the underlying
causes [5], but requires clock recovery, is format and bit-rate
dependent, and can be difficult to extract for strongly distorted
signals.
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The asynchronous histogram technique has been proposed as
an alternative sampling technique that does not require clock
recovery [6]–[10]. Whilst this technique demonstrates sensi-
tivity to multiple impairments, uniquely identifying a partic-
ular impairment in the presence of other impairments remains a
challenge.

We have recently introduced a new sampling technique,
known as “asynchronous delay tap sampling” in which mul-
tiple impairment measurements as well as signal quality are
extracted from a two dimensional histogram of the signal [11],
[12]. This histogram, known as a phase portrait, provides the
information richness of an eye diagram without the require-
ment of clock extraction. The phase portraits contain unique
impairment signatures that can be discovered using statistical
pattern recognition techniques. With this approach we are able
to not just classify impairments, but to quantitatively monitor
simultaneous combinations.

Simulation results of 10 Gbit/s NRZ have shown the poten-
tial for simultaneous monitoring of OSNR, CD, DGD, crosstalk
and optical filter detuning as well the ability to measure signal
quality parameters Q and timing jitter [4]. The first experimental
results (using a training set of 300 cases) were demonstrated for
simultaneous combinations of OSNR, CD and DGD with RMS
errors of 0.6 dB, 100 ps/nm and 3.1 ps respectively [12]. An
important limitation of these earlier works was that the signal
polarization was such that 1st order PMD had a fixed and equal
power split between principal states. In recent work [13] the po-
larization restriction has been removed, with the first demon-
stration of CD (RMS error of 17 ps/nm) and 1st order PMD with
random power splits on a commercial 10 Gbit/s NRZ WDM test
channel. This work used an automated network emulator that
enabled larger training sets (900 cases) to be created.

An advantage of the technique is that a simple direct detec-
tion receiver can be used to monitor a variety of bit rates and
modulation formats without the need for demodulation of the
signal or modification of the receiver bandwidth. For example
the amplitude variations in both RZ-DPSK and RZ-DQPSK sig-
nals have been used to monitor OSNR and CD [14], [15] with
delay tap sampling.

We note that monitoring of digital coherent systems using the
information available in the digital equalizer at the receiver has
recently been demonstrated for CD, PMD and OSNR and PDL
[16], [17]. Whilst these techniques provide a cost effective so-
lution at the receiver they cannot be readily used at intermediate
points in the network. In contrast the potential for a distributed
solution based on a simple direct detection receiver is a key at-
tribute of the asynchronous delay tap technique.

In this paper we present a review of our technique and demon-
strate its ability to simultaneously measure CD and PMD on a
40 Gbit/s NRZ-DPSK format.

0733-8724/$26.00 © 2009 IEEE



3730 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 16, AUGUST 15, 2009

Fig. 1. Processing of delay tap sample pairs to create phase portraits. The labels
on the phase portrait represent the sampled bit sequences.

The paper is organized as follows. In Section II, we describe
the generation and interpretation of phase portraits and the use
of pattern recognition techniques to identify impairments. We
introduce a measure of DGD which takes into account arbi-
trary power splits between principal polarization states. Simu-
lation results for a 40 Gbit/s NRZ-DPSK system are presented
in Section III and in Section IV we describe the experimental
implementation of our system which includes both the genera-
tion of training sets and the implementation of the monitor with
results and discussion. We conclude the paper with Section IV.

II. TECHNIQUE

There are two key components to the technique which we
describe below. The first is the construction of the phase por-
trait. The second is the application of statistical pattern recogni-
tion techniques to extract impairment signatures from the phase
portraits.

A. Phase Portrait1

Asynchronous delay-tap sampling is an alternative to the eye
diagram that uses the joint probability density function (pdf) of
a signal , and its delayed version to characterize
the signal. This pdf, known as a phase portrait, is sensitive to
waveform distortion and noise and contains unique signatures
of impairments. To generate the phase portrait the waveform is
sampled in pairs separated by a known delay , as shown for
the NRZ signal in Fig. 1(a). The phase portrait is then created
by binning the sample pairs into a two dimensional histogram as
shown in Fig. 1(b), for a one-bit delay, . We emphasize
that the sampling is asynchronous, in that the time between the

1Unbeknown to the authors in the early development of this monitoring tech-
nique, delay tap sampling is used in the field of non-linear time series analysis
where it is referred to as “time delay embedding”. It is also where the term
“phase portrait” originates and in this context the term “phase” bears no rela-
tion to optical phase.

pairs, , is not related to the monitored signal bit rate, and can
be many orders of magnitude longer.

A fundamental difference between the eye diagram and phase
portrait is that the latter contains information about the correla-
tion between samples on the time scale of a bit period. Alterna-
tively for short time delays, for example 0.25 T, we can interpret
the phase portrait as containing joint probability density infor-
mation of the amplitude and slope of the waveform with respect
to time. This information is absent in eye diagrams that are con-
structed from samples that are separated by long periods.

In Fig. 1(b), the corners of the phase portrait represent the
sample pairs of well defined marks and spaces. The lines joining
these points reflect the bit transitions between these states. For
example the diagonal line represents the 010 and 101 transition.
As we will show below, waveform distortions in the time do-
main manifest as variations in curvature and density of these
lines.

We note that whilst the choice of 1 bit delay is a useful tool
for visualisation, it is not critical for pattern recognition. This
enables a fixed delay of 25 ps for example, to be used for both 10
and 40 Gbit/s signals. To help understand the effects of different
impairments on the phase portrait, we have simulated optical
signal to noise ratio (OSNR), chromatic dispersion (CD), polar-
ization mode dispersion (PMD) and interferometric crosstalk on
a 10 Gbit/s NRZ signal. The resulting phase portraits and eye di-
agrams are shown Fig. 2. In all cases the tap delay for the phase
portrait was chosen to be 1 bit period. Fig. 2(a) shows the results
for no optical impairment (OSNR 35 dB), with a clean eye and
a well defined geometric shape in the phase portrait. Fig. 2(b)
shows the effects of reducing the OSNR to 25 dB. The predom-
inant effect is to broaden the high power regions of both the eye
and phase portrait, but the underlying geometric shapes are not
affected. Fig. 2(c) shows OSNR of 35 dB with 800 ps/nm of
CD, corresponding to 50 km of SMF. The eye diagram shows
the characteristic narrowing of the peaks. In the phase portrait,
the dispersion causes the diagonal to curve in towards the origin.

Fig. 2(d) shows an OSNR of 35 dB with 30 ps of first order
PMD, with the power split equally between the principal po-
larization axes. The eye shows the characteristic ‘triangulariza-
tion’, but still looks very clean. Interestingly at a first glance,
the phase portrait does not show the effects of PMD. However
a closer inspection shows significant differences in the distribu-
tion of points along the lines representing the 3 bit transitions.
Fig. 2(e) shows OSNR of 35 dB with a single source of inter-
ferometric crosstalk at 25 dB. Both the eye and two-tap plots
show similar broadening to the OSNR degradation, but different
noise statistics. Finally Fig. 2(f) shows OSNR of 25 dB with the
combined degradations from Figs. 2(a)–(f).

These initial results suggested that the phase portraits con-
tained impairment signatures that could be exploited to enable
us to distinguish between a variety of optical impairments.
As we will show in the next section, this is indeed the case,
in particular there exist features that enable us to identify and
measure the individual impairments even in the cases where
they occur simultaneously as in Fig. 2(f). However such a
determination of individual impairment values in the case of
mixed impairments requires more sophisticated approaches
than hand-crafted measurement of image features. For instance,
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Fig. 2. Eye diagrams and phase portraits for NRZ, 1 bit delay (a) ���� �

�� dB and no impairment, (b) ���� � �� dB, (c) ���� � �� dB and 	 �

���
���, (d)���� � �� dB and��	 � �� ps, (e)���� � �� dB and
���

���� � ��� dB (f) ���� � �� dB, 	 � 
�� �
���, ��	 � �� ps,
and ���

���� � ��� dB.

in Fig. 2(f), the curvature of the diagonal line is obscured by
ASE noise, and reduced by PMD. To address this issue in a
principled manner, we used statistical learning techniques to
automate feature selection.

Finally we note that the asynchronous sampling technique is
applicable to a variety of signal formats [14], [15], [18]. For ex-
ample, in Fig. 3 we show experimentally measured phase por-
traits for 10 Gbit/s RZ showing the effects of CD. The clear
differences between the RZ and NRZ (from Fig. 2) portraits
suggest that the technique may also be used to identify signal
formats.

B. Pattern Recognition

Phase portraits can be treated as images, with the pixel in-
tensity representing the number of hits in each bin. These pic-
tures lend themselves well to pattern recognition techniques
[5], [20]. Since, in this case, the impairment values are contin-
uous variables; we used kernel based ridge regression [19], [20],
rather than using classification into small discrete categories, as
in [5] or hand-written digit recognition [20]. We have found,
however, that a range of estimators, corresponding to various
pre-processing of the data and kernels used, produced accept-
able results.

As stated above, the first step in the training process is bin-
ning the sample pairs into a two dimensional histogram. For the

Fig. 3. Experimental eye diagram and phase portrait for RZ, 1 bit delay (a)
clean signal (b) 850 ps/nm CD.

results shown in this work we use a 30 by 30 histogram. Fea-
tures can then be extracted from these histograms to form the
basis of the training sets. (For example in the approach adopted
in [21] only six features are selected which represent the mean
and variance of the bins in each of three quadrants). Alterna-
tively, as in the case described here all 900 features are available
for training.

The predictor for each impairment can, in general, be as-
sumed to be a weighted non-linear combination of features. For
example the predictor for abs(CD) can be written as

where is in general a non linear kernel function of the phase
portrait feature vector to be measured and the phase portraits
in the training set. The training process determines the weights

which jointly minimises the sum of the squared errors and
a regularisation term, the latter of which is used to avoid over
fitting [20]. In practice, the training sets are created using a “net-
work emulator” to add known quantities of the impairments to
a clean signal.

Training is done independently for each impairment by min-
imising the impairment prediction error (CD for example) in
the presence of the other background impairments (OSNR and
DGD). This enables the CD predictor to be valid over the DGD
and OSNR range included in training. For impairment levels
outside this range the CD will be expected to suffer from OSNR
and DGD dependence. We point out that the CD prediction does
not require simultaneous DGD or OSNR predictions to be made
as the predictors are independently trained.

It is currently assumed that monitor has access to knowledge
of the formats and bit rates being monitored from the network
management system and can select appropriate predictors from
an on-board library. The requirements for training over different
forward error correction (FEC) rates (eg 10.0 and 10.7 Gbit/s)
can be met by either using a variable delay that is tuned to the
bit period or by using a fixed delay and combining training sets
from varying bit rates to produce a predictor. With this latter
approach a single predictor could be used to monitor different
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Fig. 4. Setup for multi-impairment monitoring using delay-tap asynchronous sampling. Network emulator adds known combinations of CD, 1st order PMD (DGD
and �) and OSNR to 40 Gbit/s NRZ-DPSK signal for generation of training and test cases. The polarization alignment of the signal with DGD emulator is varied
between each measurement to ensure random � .

Fig. 5. Simulation results for 40 Gbit/s NRZ DPSK simultaneous measurements of ���� (RMS error of 11 ps/nm), ��� (RMS error of 0.75 ps) and DGD.
The background OSNR ranged from 13 to 25 dB. 500 random test cases were selected. The power split between principle polarization states � was assumed to be
random. We have included the DGD results to illustrate advantage of using ��� which includes the effect of � .

FEC rates without recourse to the network management system.
In principle, to make the technique more robust, one can extend
the training set to include other effects which can potentially
induce errors; these may include filter drift, delay variations or
transponder variations. The challenge in this case is to select
features that help prevent the training set from becoming too
large.

C. 1st Order PMD

In our first demonstration of the technique [11], [12] the im-
pairments included were OSNR, CD and DGD where the latter
was restricted to worst case polarization alignment of the signal
and the principal states. More recently we have demonstrated
the technique at 10 Gbit/s taking into account both the differ-
ential group delay (DGD) and a random power split between
principal states. To do this we define an effective differential
group delay that is proportional
to first-order string length and is a measure of first-order PMD
system penalty [22], [23]. When the signal is aligned with either
principal state of polarization (PSP) ( or 1)
and the signal remains undistorted regardless of the level of first-
order PMD. The factor of 4 in is chosen so that when

, . The advantages of using
are that it is directly related to the induced signal distortion and
thus the 1st order PMD-induced system penalty, and it provides
a dynamic measure for feedback for PMD compensation.

III. SIMULATIONS

In order to gauge the accuracy of the technique we present
simulation results for a 40 Gbit/s NRZ-DPSK signal. A
schematic of the setup of the network emulator and the multi
impairment monitor used for both simulation and experiments
is shown in Fig. 4. The key components of the monitor are a 30
GHz optical filter and a 20 GHz bandwidth receiver followed
by a 1 bit tap delay. A set of 1700 phase portraits were produced
by simulating combinations of CD from 0 to 700 ps/nm (70
ps/nm steps), DGD from 0 to 20 ps (5 ps steps), from 0 to 1
(random) and OSNR from 13 to 26 dB (2 dB steps). 1200 cases
were randomly selected for training with the remaining 500 for
testing.

Fig. 5 shows scatter plots of the predicted CD, , and
DGD values against the true impairment values. The RMS error
for CD is 11 ps/nm over a range of 0 to 700 ps/nm and is 0.75
ps for over 0 to 25 ps. We have included the poor DGD
result to highlight the advantage of the measure.

The large DGD error reflects the difficulty in separating the
combined effects of DGD and on the phase portrait. For the
cases where or 1 the phase portrait is independent of
DGD and the DGD is therefore impossible to predict. In the
more general case, the large variation in the distortion of phase
portraits with identical DGD and varying poses a challenge
for the sensitivity of this technique. In principle one may have
expected an asymmetry in the phase portrait (about the line
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) to enable some discriminating ability for and hence DGD
in the same way that one expects an asymmetry in the leading
and trailing edges of eye diagram with varying power in the
fast and slow principle states. Unfortunately however, intrinsic
asymmetry in transponder characteristics have, to date, masked
these effects.

A final comment on the DGD results concerns the distribution
of errors. In particular, we note a positive bias in the predictions
for 0 DGD. In the regression models used in this paper equal
weighting is given to all training cases and DGD levels, a conse-
quence of this is that in cases where there is little discrimination,
(ie ps and ps, , 1), the minimization
of the overall error leads to positive bias at low DGD and neg-
ative bias at high DGD. By increasing the weight given to low
DGD training cases we could potentially improve the predictor
for low DGD. Despite the negative bias at high DGD’s there are
still cases for which the prediction is higher than the true DGD;
these errors are due to the random variations in the number of
hits in each bin and can be reduced by taking a larger number
of samples or averaging over multiple measurements.

IV. EXPERIMENT

Fig. 4 shows a schematic of the experimental setup. The
channel was accessed via a 1% monitoring port at the start
of the link. The tap power level was around 20 dBm per
channel. The OSNR at the tap point was measured with an
OSA to exceed 25 dB, and the PMD and CD were assumed
to be negligible. The tapped signal was connected to a custom
built network emulation unit, which filtered the channel to be
monitored and added known combinations of impairments for
the training phase. The signal was then passed to the delay-tap
Multi-Impairment Monitor, which used delay tap sampling to
create and analyze the phase portraits, to provide performance
monitoring. Control of the Network Emulator and the data
processing of the Multi-Impairment Monitor were done via an
external laptop.

A. Network Emulator

In the Network Emulator, the 40 Gbit/s signal was generated
with a tunable DFB modulated with a dual drive Mach Zehnder
and PRBS. The signal was amplified with an EDFA to
overcome emulator loss, and filtered with a tunable 100 GHz
filter. A polarization controller was used to randomly select a
polarization state and ensure a random distribution of . Var-
ious known combinations of DGD and CD were then added to
the monitored signal. The DGD emulator had a range of 0 to
22.5 ps and true was derived from
DC optical power measurements (averaged over the sampling
time) using taps in the fast and slow axes of the DGD emulator.
We note that the polarization controller was programmed to step
through random polarization states and was held constant during
the sampling of each phase portrait.

The OSNR was controlled by coupling in a variable amount
of ASE, generated by filtering and amplifying the output of an
EDFA. Varying levels of OSNR were used to ensure that the
CD and PMD predictions were valid across normal operational
ranges. The ASE source was placed after the PMD emulator to

ensure that the measurement of was not compromised by the
added ASE noise. CD was controlled using a tunable dispersion
compensation module with a range of 400 to 400 ps/nm. The
impaired signal was then passed to the MIM for sampling and
analysis.

B. Multi Impairment Monitor

In the monitor, the signal was amplified to deliver a constant
power of 0 dBm to the photodiode, after then filtering with a
tunable optical filter with a 3 dB bandwidth of 30 GHz. The
signal was then fed to a 20 GHz receiver followed by a 50:50
splitter with a tunable electrical delay in one arm. The signal and
delayed ports were asynchronously sampled at 40 kS/s using a
customized dual channel analogue to digital converter with a
bandwidth of 20 GHz. For every Network Emulator setting, a
phase portrait was generated from 40,000 sample pairs. Training
and test sets were created by programming the emulator to step
through combinations of CD from 400 to 400 ps/nm (20 ps/nm
steps) and DGD from 0 to 22.5 ps (2.5 then 4 ps steps), while
varying the OSNR between 15 and 25 dB (8 levels) giving a
total of approximately 2000 phase portraits. We note that the
polarization state and hence varied randomly across this phase
portrait data set. In practice, allowing for emulator tuning set up
times, the training time is approximately 3 hrs.

C. Data Processing

The set of 2000 phase portraits was then randomly divided,
with 1500 becoming the training set. The training set was used
to generate independent regression models for both CD and

. The accuracy of the resulting CD and models
were then tested on the remaining 500 cases.

D. Results and Discussion

Fig. 6 shows a random selection of phase portraits taken from
the training set. We note that the optical filter bandwidth of 30
GHz partially demodulates the signal. The effects of CD are
seen in the loop structure of (a) and (b) and OSNR changes in
the closure of (c) and (d). It is difficult to pick systematic DGD
changes by eye.

Fig. 6 shows scatter plots of the predicted and
results against the true impairment values. The RMS error for

is 11 ps/nm over a range of 0 to 400 ps/nm and is 1.9
for over 0 to 22.5 ps. We emphasize these results are
taken over all combinations of impairments. The measurement
ranges are restricted by the Network Emulator, and do not rep-
resent an intrinsic limitation of the technique. The CD results
are consistent with simulation results and show good accuracy
across all values. A breakdown of the accuracy of as a
function of and OSNR is given in Table I(a). As ex-
pected the CD error degrades with increasing and low
OSNR. We expect that closer agreement between the experi-
mental and simulation results for could be achieved
with an improved measurement of . A breakdown of the accu-
racy of the results is given in Table I(b). As before the
accuracy degrades with poor OSNR but surprisingly improves
with increasing CD. A possible interpretation of this is that the
CD induced phase to amplitude conversion provides a larger
waveform (Fig. 6(a)) for to distort.
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Fig. 6. Random selection of experimental 40 Gbit/s NRZ-DPSK 1 bit delay phase portraits taken from training set. We note that the optical filter bandwidth of 30
GHz partially demodulates the signal. Impairments are labeled as [OSNR (dB), CD (ps/nm),��� (ps)]. The effects of CD are seen in the loop structure of (a)
and (b) and OSNR changes in the closure of (c) and (d). It is difficult to pick systematic DGD changes by eye.

TABLE I
CONDITIONAL ERRORS FOR 40 Gbit/s NRZ-DPSK

Conditional RMS errors for (a) ���� (ps/nm) in the presence of background
levels of OSNR and PMD (b) ��� (ps) in the presence of background.
OSNR and CD. Results calculated from 500 test cases.

TABLE II
RMS ERRORS AS A FUNCTION OF THE NUMBER OF TRAINING CASES

Table II shows the improvement in accuracy obtained with
increasing training set size. There is a relatively rapid improve-
ment in performance for the first 1000 training cases which then
plateaus for greater than 2000 cases. The required number of
training cases will however, vary depending on the impairment
range. We note that a significant component of the errors seen
in the scatter plots of Fig. 7 are due to random variations in the
phase portraits, the effects of which can be negated with a larger
numbers of sample pairs or by averaging consecutive measure-
ments. To illustrate this point Fig. 8 shows an ordered plot of
true and measured for 40 Gbit/s DPSK. In this
case we have taken a running average of 5 measurements. The

Fig. 7. Experimental results for 40 Gbit/s NRZ DPSK simultaneous measure-
ments of ���� (RMS error of 11 ps/nm), and ��� (RMS error of 1.9 ps).
The background OSNR ranged from 15 to 25 dB. 500 random test cases were
selected.

Fig. 8. Experimental results for order cases of 40 Gbit/s NRZ DPSK measure-
ments of ��� using a running average of 5 cases.

RMS error is reduced by a factor of two and in this case the
worst case error is 3 ps for . (A similar improvement for
the RMS error for CD is obtained).

For the experimental setup described in this paper the mea-
surement time was 1.2 s. This is dominated by the sampling
time; the processing time required for prediction taking less than
0.2 s. In future implementations, cost effective solutions at sam-
pling rates of 50 MS/s will be achievable with currently avail-
able sample and hold technology. This together with more ef-
ficient processing algorithms will enable measurement times of
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better than 50 ms and provide an increased ability to exploit the
improvement in accuracy that is achievable through averaging
of multiple measurements.

V. CONCLUSION

The asynchronous delay tap sampling technique is a promising
in-service monitoring technique capable of measuring simulta-
neous impairments for both ASK and PSK signals. The two key
components are the characterization of the signal with an asyn-
chronously sampled phase portrait and the extraction of impair-
ment features using statistical machine learning techniques.

In this paper we demonstrate the technique on a 40 Gbit/s
NRZ DPSK signal. Prediction models were trained on combi-
nations of dispersion, OSNR and 1st order PMD with random
power splits between principle states. Results show and

measurements with standard errors of 11 ps/nm and
1.9 ps respectively, with OSNR levels varying between 15 and

25 dB.
The application of the technique to advanced formats in-

cluding polarization multiplexed and multi-level systems is
under investigation. The authors believe that the phase to
amplitude conversion provided by optical filtering together
with automated learning techniques provide the potential to
monitor these formats with simple direct detection receivers.
A key benefit of our approach is that it can be applied without
the need for fine tuning of features. For example, using the
same algorithms as applied here to NRZ-DPSK, we find that
simulations of 40 Gbit/s RZ-DQPSK and 100 Gbit/s 8 PSK give
results, that are consistent with accuracies for simultaneous CD
and presented in this paper. Finally, our experience to
date suggests that the ability of the machine learning techniques
to discern patterns in very “unstructured” phase portraits holds
promise for application of the technique to the monitoring of
polarization multiplexed systems.
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