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Abstract—We propose a novel technique for simultane-
ous multi-impairment monitoring and autonomous bit-
rate and modulation format identification (BR-MFI) in
next-generation heterogeneous fiber-optic communication
networks by using principal component analysis-based pat-
tern recognition on asynchronous delay-tap plots. The
results of numerical simulations performed for three com-
monly used modulation formats at two different bit-rates
each demonstrate simultaneous and independent monitor-
ing of optical signal-to-noise ratio, chromatic dispersion,
and differential group delay with mean errors of 1 dB,
4 ps∕nm, and 1.6 ps, respectively, without knowing the sig-
nal’s bit-rate and modulation format. Similarly, the results
for joint BR-MFI validate accurate identification of all the
bit-rates and modulation formats despite the presence of
various network impairments. The effects of fiber nonli-
nearity and transmitter variations on the performance of
the proposed technique are also investigated.

Index Terms—Asynchronous delay-tap sampling; Bit-rate
andmodulation format identification; Optical performance
monitoring; Principal component analysis.

I. INTRODUCTION

O ptical performance monitoring (OPM) is envisaged to
be an integral part of the future dynamic fiber-optic

communication networks offering increased flexibility and
utilization of available network resources. In dynamic
optical networks, each individual wavelength-division-
multiplexed (WDM) channel may traverse different paths
due to network reconfigurablity enabled by optical add-
drop multiplexers and hence, may accumulate different
amounts of transmission impairments [1,2]. Therefore, it

is imperative to have continuous and real-time information
about the extent of channel impairments in dynamic fiber-
optic communication networks. Apart from being dynamic,
the next-generation optical networks are also envisioned to
be heterogeneous in nature incorporating multiple modu-
lation formats as well as different data rates in order to
comply with the versatile data rate demands of the end
users [3]. Over the past few years, a plethora of OPM tech-
niques capable of monitoring multiple network impair-
ments have been proposed [4–18]. These techniques
assume either prior knowledge of the signal’s bit-rate
and modulation format or the acquisition of this informa-
tion from the upper-layer protocols. However, for practical
purposes, it is not viable to introduce additional cross-layer
communication for the sake of OPM at the intermediate
network nodes since these nodes can only afford limited
complexity. Therefore, there is considerable interest in
the development of OPM techniques capable of monitoring
multiple impairments for a number of bit-rates and modu-
lation formats without requiring any information about the
signal type during the monitoring process.

With the emergence of flexible transceivers, the bit-rates
and modulation formats of the signals arriving at the
receivers may vary dynamically [19]. Therefore, the digital
coherent receivers in future optical networks will be pre-
ferred to be capable of autonomous recognition of a
transmitted signal’s bit-rate andmodulation format, for ex-
ample, for the purpose of selecting an appropriate carrier
recovery module among other functionalities. Similarly,
bit-rate and modulation format identification (BR-MFI)
may also be essential at the intermediate network nodes
since the OPM techniques employed may be bit-rate/modu-
lation format dependent. Joint BR-MFI in optical networks
is a relatively new area of research and only a few efforts so
far have been made toward the realization of this useful
feature. In [20–23], modulation format identification
(MFI) using digital coherent receivers has been demon-
strated. However, these techniques suffer from the follow-
ing drawbacks. (i) All of these techniques require coherent
detection with symbol rate sampling. Since the complexity
(and cost) of a full-fledged coherent receiver is quite high,
these techniques may not be ideal for use at the intermedi-http://dx.doi.org/10.1364/JOCN.6.000441
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ate network nodes. (ii) Almost all of these techniques are
limited to MFI only and cannot enable joint BR-MFI.
Recently, we proposed artificial neural network (ANN)-
based techniques for MFI [24] as well as joint BR-MFI
[25] in heterogeneous fiber-optic networks with good iden-
tification accuracies. However, both of these techniques
focus on identifying the type of the signal and do not
provide any information about the quality of the signal.

In this paper, we extend our previous work and propose
a cost-effective technique which employs principal com-
ponent analysis (PCA)-based pattern recognition in
combination with asynchronous delay-tap plots (ADTPs)
for monitoring multiple network impairments for several
different modulation formats and data rates without
necessitating hardware changes and without requiring any
information about the signal type during the online
monitoring process. The proposed technique can also
accurately identify the bit-rate and modulation format
of the signal from a known set of bit-rates and modulation
formats. To demonstrate the validity of the proposed
technique, numerical simulations are performed for
10∕20 Gbps return-to-zero (RZ) on–off keying (OOK),
40∕100 Gbps polarization-multiplexed (PM) RZ quadra-
ture phase-shift keying (QPSK), and 100∕200 Gbps PM
non-return-to-zero (NRZ) 16 quadrature amplitude modu-
lation (16QAM) signals. The results show simultaneous
and independent optical signal-to-noise ratio (OSNR),
chromatic dispersion (CD), and differential group delay
(DGD) monitoring as well as joint BR-MFI with good
accuracies.

II. JOINT OPM AND BR-MFI USING PCA

Figure 1 shows ADTPs for three modulation formats at
two different bit-rates in the presence of various transmis-
sion impairments. An ADTP is quintessentially a two-
dimensional (2D) histogram of closely located sample pairs
with the advantage that its generation does not require
timing/clock information unlike the conventional synchro-
nous eye diagrams [6,7]. It is evident from Fig. 1 that the
patterns reflected by the ADTPs are sensitive to network
impairments as well as to the type of signal. Therefore,
statistical pattern recognition techniques can be used to
exploit the ADTPs’ features for joint multi-impairment
monitoring and BR-MFI. Recently, several ADTP-based
multi-impairment monitoring techniques have been pro-
posed [5,8–10]. However, all these techniques essentially
require information about the actual bit-rate and modula-
tion format of the signal for the purpose of selecting a pre-
dictor or a calibration curve appropriate for that specific
signal type and cannot independently perform BR-MFI.
In this work, we treat ADTPs as images (called ADTP-
images) and analyze their characteristics using PCA, also
known as the Karhunen–Loève transform (KLT), which is a
statistical technique for data representation and features
extraction [26,27]. Given a set of images represented in
a high-dimension image space, PCA finds a small set of
orthonormal eigenvectors spanning a subspace so that
all the given images can be represented without losing
much information [28,29]. Thus, PCA can reduce the

dimensionality of an image space, resulting in amuchmore
compact representation of the images.

Consider a set S having M ADTP-images corresponding
to various known combinations of impairments, bit-rates,
and modulation formats. Let the size of each ADTP-image
be N ×N. An ADTP-image can also be expressed as a
one-dimensional vector xi of length N2 by concatenating
all the columns (or rows) of the image. Hence, we can
represent the whole set S by one big image matrix

Fig. 1. ADTPs for three modulation formats at two different bit-
rates for various combinations of impairments. The left column
corresponds to OSNR � 20 dB and without CD and DGD, whereas
the right column corresponds to OSNR � 18 dB, CD �
100 ps∕nm, and DGD � 5 ps (α � 45°). A tap-delay of 15 ps is used
for the generation of all ADTPs.
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X � �x1; x2;…; xM � of sizeN2 ×M. The mean image vectorΨ
of matrix X is defined as

Ψ � 1
M

XM

i�1

xi: (1)

SubtractingΨ from each column of the matrix X , we obtain
a zero-mean image matrix Y � �y1; y2;…; yM �. The covari-
ance matrix C of Y is given as

C � 1
M

XM

i�1

yiyTi � YYT: (2)

The size of matrix C � YYT is N2 × N2 and hence, it can
have up toN2 eigenvectors and eigenvalues. Let vi and λi be
the ith eigenvector and eigenvalue of C, respectively; then
by using

Cvi � λivi for i � 1;2;…; N2 (3)

we can determine N2 eigenvectors, also called principal
components (PCs), of C. The computed eigenvectors are
ranked according to their eigenvalues and amongst them
K (where K ≪ N2) eigenvectors corresponding to the K
largest eigenvalues are selected while the rest are dis-
carded. The value of K is chosen such that the following
criterion is satisfied:

R �
XK

i�1

λi∕
XN2

i�1

λi > P; (4)

where the value of P is typically chosen to be above 0.9
[26,27]. The selected eigenvectors span a K-dimensional
subspace of the original N2-dimensional image space.
Any vector y can be approximated as a weighted-sum of
the selected eigenvectors in this subspace, i.e.,

y ≈
XK

k�1

wkvk ⇒ wk � vTk y for k � 1;2;…; K: (5)

The weights wk constitute a vector Ω � �w1; w2;…; wK �T,
called the feature vector of the ADTP-image. Thus, using
Eq. (5), we can compute the feature vectors of all the

ADTP-images in S. These feature vectors can then be used
to construct a reference database for subsequent image rec-
ognition purposes.

In order to estimate the unknown impairment values as
well as to identify the bit-rate and modulation format cor-
responding to a given ADTP-image, we can compute its fea-
ture vector Ω (using K eigenvectors obtained for the set S)
and compare it with all the available feature vectors in the
reference database to determine which feature vector
amongst all best matches with the given feature vector.
This can be accomplished by finding the minimum Euclid-
ean distanceDmin between the feature vectorΩ of the given
ADTP-image and all the other feature vectors in the
reference database, i.e.,

Dmin � min�‖Ω −Ωj‖j�1;2;…;M�; (6)

where Ωj is the feature vector of the jth ADTP-image in the
reference database. The use of extremely reduced size fea-
ture vectors, obtained using PCA, makes the feature vector
matching process computationally efficient, which is ad-
vantageous especially for real-time applications. To further
reduce the computational complexity of the feature vectors
matching process, a threshold value θ for the Euclidean
distance Dj � ‖Ω −Ωj‖j�1;2;…;M can be defined and the
matching process is aborted as soon as Dj ≤ θ. This ap-
proach (also used in automatic face recognition systems)
requires a careful selection of θ so as to reduce the computa-
tional complexity and time while maintaining the desired
estimation accuracy [28,29]. The impairment values,
bit-rate, and modulation format corresponding to the
feature vector in the reference database, which best
matches with the given feature vector Ω, are taken as
the estimated impairment values and the identified
bit-rate and modulation format.

III. SYSTEM CONFIGURATION AND RESULTS

In order to analyze the validity of the proposed tech-
nique, we have performed numerical simulations using
the VPI software [30]. Figure 2 shows the system configu-
ration used in our simulations. Six different transmitters
are used to generate 10∕20 Gbps RZ-OOK, 40∕100 Gbps

Fig. 2. System setup for joint OPM and BR-MFI using PCA and ADTPs.
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PM-RZ-QPSK, and 100∕200 Gbps PM-NRZ-16QAM
signals, which are then transmitted over a single-mode
fiber (SMF). For PM signals, we assume the same bit-rates
for the signals in two polarizations. Furthermore, the two
orthogonally polarized signals are assumed to be initially
time-aligned with each other. The OSNRs of the signals are
varied in the range of 14–28 dB (in steps of 2 dB) by using
an erbium-doped fiber amplifier (EDFA) with a variable
optical attenuator (VOA) in front. A CD emulator is used
to add CD in the range of −500–500 ps∕nm in steps of
80 ps∕nm while a polarization-mode dispersion (PMD) em-
ulator is utilized to introduce DGD in the range of 0–10 ps
in steps of 2 ps. To simulate the random PMD effects in real
optical fibers, the angle α between the transmitted signal’s
state of polarization (SOP) and the principal states of
polarization (PSP) of the PMD emulator is altered at ran-
dom. For each specific value of DGD, seven random values
of α between 0° and 90° are considered. A fraction of the
optical signal (i.e., a fixed power level of −6 dBm) is tapped
from the link with the help of an optical coupler and is fed
into the monitoring module where an optical band-pass
filter (BPF) is used to filter the desired channel. The
filtered optical signal is then directly detected using
a receiver with optical and electrical bandwidths of
0.8 nm and 50 GHz, respectively. The electrical signal after
optical-to-electronic (O/E) conversion is sampled (with a
sampling rate of 500 Msamples∕s) using asynchronous
delay-tap sampling (ADTS) with a tap-delay of 15 ps. There
is no rule of thumb for choosing the tap-delay in ADTS
and often a tap-delay that is just a fraction (i.e., from
1∕10 to 1∕4) of the symbol period is used [5–9]. Since
the maximum and minimum symbol periods for the
bit-rates and modulation formats considered in this work
are 100 and 40 ps, respectively, we have selected a tap-
delay of 15 ps in this case. Another reason for the selection
of this tap-delay is that the ADTP patterns (for the set of
signals involved) resulting from this tap-delay are visibly
well distinguishable, as is clear from Fig. 1. In general,
the tap-delay can be adjusted by starting with a fraction
of the minimum symbol period amongst all the signals
under consideration and then varying it iteratively until
the required estimation accuracy is attained. A total of
100,000 delay-tap sample pairs are collected and used to
generate an ADTP with 30 × 30 bins. A large data set
consisting of 26,208 ADTPs corresponding to different
OSNR, CD, DGD, α, bit-rates, and modulation formats is
obtained. Two distinct subsets called reference and testing
data sets are then generated by randomly dividing the
ADTPs in the overall data set into two parts. Next, PCA
is applied to compute the feature vectors of all the
ADTP-images in the reference data set. Figure 3(a) shows
the eigenvalues for a few PCs in descending order. It is evi-
dent from the figure that the eigenvalues rapidly converge
to zero. Figure 3(b) shows the value of parameter R as a
function of the number of PCs selected K. It is clear from
the figure that the value of R is above 0.98 for just eight
PCs (out of a total of 900 PCs). This implies that it is
reasonable to use only a few PCs for the synthesis of
feature vectors and discard the remaining without losing
much information. The feature vectors corresponding to

the ADTP-images in the reference data set are used to
construct a reference database for subsequent image
recognition.

To investigate the performance of the proposed tech-
nique, feature vectors of all the ADTP-images in the testing
data set are determined. For each feature vector in the test-
ing data set, the best match in the reference database is
obtained using the procedure described in the previous sec-
tion, and the OSNR, CD, DGD, bit-rate, and modulation
format are then determined accordingly. Figure 4 shows
the results of OSNR, CD, and DGD monitoring for three
different proportions, i.e., 70%:30%, 60%:40%, and
50%:50%, of the reference and testing data sets. Since
the size of the overall data set is fixed, i.e., 26,208, the three
different proportions of the reference and testing data sets
essentially mean three different sizes of the reference data-
base, i.e., 18,346, 15,724, and 13,104. Note that since the
overall data set encompasses an equal number of ADTP-
images (i.e., 26;208∕6 � 4368) for all six signal types under
consideration and since the testing data set is obtained by
randomly selecting 30%, 40%, and 50% of the ADTP-im-
ages in the overall data set, the testing data set will contain
an approximately equal number of ADTP-images (and thus
feature vectors) for each signal type. It is clear from Fig. 4
that the estimation accuracy depends on the number of PCs
selected up to a certain point. For 10 PCs, the mean esti-
mation errors for OSNR, CD, and DGD are 1 dB, 4 ps∕nm,
and 1.6 ps, respectively. It is also evident from the figure
that a reduction in the size of the reference database,
i.e., from 70% to 50% of the overall data, does not result
in a significant increase in estimation errors.

Table I summarizes the results of joint BR-MFI using
only two as well as more than two PCs. The identification

Fig. 3. (a) Eigenvalues λi for a few PCs in descending order.
(b) Parameter R as a function of the number of PCs selected.
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accuracies given in Table I are calculated by dividing the
number of correct identifications for a given bit-rate and
modulation format with the total number of feature vectors

corresponding to that signal type in the testing data set.
Thus, an identification accuracy of 100%, for example,
would signify no errors encountered in identifying that sig-
nal type. It is evident from the table that good identifica-
tion accuracies are achieved for all six signal types under
consideration with an overall accuracy (i.e., average of the
accuracies for the six signal types) of 92.6% using only two
PCs and 100% for more than two PCs, thus validating the
applicability of the proposed technique. The identification
accuracies demonstrated by the proposed technique are
better than the ones shown by the ANN-based BR-MFI
technique [25]. Figure 5 shows the effect of the number
of PCs selected on the overall identification accuracy. It
is clear from the figure that using only one PC, the identi-
fication accuracy is merely 70%, while using three and
more PCs, the accuracy readily approaches 100%. Note
that all these high identification accuracies have been
achieved in practical channel conditions, i.e., in the pres-
ence of various transmission impairments. It is also evi-
dent from Fig. 5 that the identification accuracy is not
affected by the size of the reference database.

To analyze the reliability of the proposed technique
against variations that may exist between transmitters
(even among the ones belonging to the same model), for ex-
ample, due to manufacturing tolerances and components
ageing, we have performed numerical simulations by utiliz-
ing transmitters for the generation of testing data which
are dissimilar to the ones used for the synthesis of the
reference database. In particular, the rise and fall times

Fig. 4. Mean estimation error for (a) OSNR, (b) CD, and (c) DGD
as a function of number of PCs selected for three different propor-
tions of reference and testing data. The total number of reference
and testing data is 26,208.

Fig. 5. Effect of number of PCs selected on the overall identifica-
tion accuracy for three different proportions of reference and
testing data.

TABLE I
IDENTIFICATION ACCURACIES FOR VARIOUS BIT-RATES AND MODULATION FORMATS USING ONLY TWO PCS (NORMAL) AND

MORE THAN TWO PCS (BOLD)a

Identified Bit-Rate and Modulation Format

Actual Bit-Rate and
Modulation Format

10 Gbps
RZ-OOK

20 Gbps
RZ-OOK

40 Gbps PM-
RZ-QPSK

100 Gbps PM-
RZ-QPSK

100 Gbps PM-
NRZ-16QAM

200 Gbps PM-
NRZ-16QAM

10 Gbps RZ-OOK 98.05% 100% 1.95% – – – –

20 Gbps RZ-OOK 1.81% 98.19% 100% – – – –

40 Gbps PM-RZ-QPSK – – 98.45% 100% 0.93% – 0.62%
100 Gbps PM-RZ-QPSK – – 1.51% 93.41% 100% 3.79% 1.29%
100 Gbps PM-NRZ-16QAM – – – 2.76% 83.28% 100% 13.95%
200 Gbps PM-NRZ-16QAM – – 0.39% 0.94% 14.47% 84.2% 100%
aThe overall identification accuracy is 92.6% for two PCs and 100% for more than two PCs.
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of the pulses generated by the two sets of transmitters dif-
fer in the range of 15%–25%. Similarly, the extinction ratios
of the two sets of transmitters differ by 3 dB. Figure 6
shows the results of OSNR, CD, and DGD monitoring, as
well as overall identification accuracy, for this scenario.
It is clear from the figure that mean CD estimation error

and identification accuracy remain almost unaffected
while using dissimilar transmitters for the generation
of reference database and testing data. Though the mean
estimation errors for OSNR and DGD are increased,
i.e., 1.4 dB and 2.4 ps (for 10 PCs), respectively, they still
remain within tolerable limits. This implies that the
proposed technique is resilient against variations in trans-
mitter characteristics. To make the technique more robust
against transmitter variations, the reference database
may be synthesized by employing a number of dissimilar
transmitters with different pulse characteristics.

Finally, we have investigated the performance of the
proposed technique in the presence of fiber nonlinearity,
whereby the reference database is generated considering
three transmission impairments, i.e., noise, CD, and
DGD while the testing data are also affected by the fiber
nonlinear effects. The transmission link used in our simu-
lations is 1000 km long and consists of multiple spans of
fiber with span length of around 60 km. The input power
and fiber nonlinear coefficient γ are 0 dBm and 1.2∕W · km,
respectively. The simulation results are shown in Fig. 6. It
is clear from Figs. 6(a)–6(c) that the mean estimation
errors for OSNR, CD, and DGD are slightly increased in
the presence of fiber nonlinearity and are approximately
1.2 dB, 12 ps∕nm, and 2.1 ps (for 10 PCs), respectively.
On the other hand, it is evident from Fig. 6(d) that the iden-
tification accuracy remains almost unchanged. If a reduc-
tion in estimation errors, caused by the fiber nonlinear
effects, is desired, then this can be potentially achieved
by also including the feature vectors corresponding to sev-
eral different values of γ and link lengths in the reference
database.

IV. DISCUSSION

During the synthesis of the reference database, the pro-
posed technique indeed requires information about various
signal types existing in the network. However, the refer-
ence database is generated offline and prior to the online
monitoring process. We would like to emphasize that all the
existing ADTP as well as asynchronous amplitude histo-
gram (AAH)-based OPM techniques also require this prior
information, for example, for the training of a predictor [10]
or for the acquisition of the calibration curves [8,9,11,
16–18]. However, the main drawback of all these tech-
niques is that they also require precise knowledge of the
signal type during the actual online monitoring process
for the purpose of selecting an appropriate predictor or a
calibration curve. In contrast, the proposed technique does
not require this information during the online monitoring
process and can autonomously identify the signal type as
long as it belongs to a specific set of signals considered
during the construction of the reference database.

In this work, we have considered OSNR, CD, andDGD in
the ranges of 14–28 dB, −500–500 ps∕nm, and 0–10 ps, re-
spectively, because these impairment ranges are typically
experienced in practical dispersion-compensated optical
networks. The estimation accuracies for both multi-
impairment monitoring and BR-MFI are anticipated to

Fig. 6. Effect of transmitter variations and fiber nonlinearity on
(a) OSNR estimation, (b) CD estimation, (c) DGD estimation, and
(d) overall identification accuracy for a 70%:30% proportion of
reference and testing data. The total number of reference and
testing data is 26,208.
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be relatively less if the impairments exceed these ranges.
This is because the proposed technique relies on the fact
that the ADTP patterns obtained for various impairment
values as well as for different bit-rates and modulation for-
mats are distinguishable from each other. However, this
condition is valid up to certain ranges of impairments.
For large transmission impairments, the signal pulses
are extremely distorted, and consequently, the ADTP pat-
terns are not well distinguishable. This puts a limit on the
allowed ranges of transmission impairments for the pro-
posed as well as other ADTP-based techniques [5,7–12].
Note that by utilizing simple direct detection along
with ADTS, the proposed technique primarily aims for
dispersion-compensated optical networks (having a consid-
erable amount of residual CD). However, it may potentially
be used in dispersion-uncompensated fiber-optic networks
by employing coherent detection instead, whereby first a
coarse CD compensation can be performed blindly and
adaptively [23], and afterward, the proposed technique
can be used for the precise estimation of residual CD as
well as other critical transmission parameters.

V. CONCLUSIONS

In this paper, we proposed a PCA-based technique for
simultaneous OSNR, CD, and PMD monitoring for several
commonly used modulation formats and data rates with
good monitoring accuracies and without requiring any in-
formation about the signal type during the online monitor-
ing process. The proposed technique can also accurately
identify the bit-rates and modulation formats of the signals
despite the presence of noise, CD, and PMD. The effects
of transmitter variations and fiber nonlinearity on the
estimation accuracy of proposed technique are also
investigated and the tolerances are examined. Due to its
simplicity, this technique can be used in receivers as well
as at the intermediate network nodes in future high-speed
dynamic optical networks.
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