

Machine Learning Methods for Communication Networks and Systems

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

Part II – 9: Flow classification

Network layer domain

Traffic classification

- Communication networks usually serve heterogeneous traffic flows in terms of:
 - protocols (http, ftp, smtp...)
 - services (fixed vs mobile, VoD, data transfer, text messages...)
 - requirements (latency, bandwidth, jitter...)
 - network "customers" (human end-users, companies, sensors, macines, servers…)
 - E.g., "mice" vs "elephant" flows in Data Centers
- Distinguish between different flows is crucial for resources
- (i.e., capacity) allocation, scheduling, security/privacy, QoS...
- Traditional classification uses partial information (source/dest IP address, protocol, port number etc.)
 - often unavailable (e.g., due to tunneling or cryptography)
 - sometimes insufficient (e.g., same protocols can carry flows with highly different characteristics)
 - maybe misleading: different protocols can carry flows with similar characteristics
- ML
 - enables traffic features extraction from direct observation of traffic flows
 - allows simultaneous use of heterogeneous features

Source 1

- F. Musumeci *et al.*, "Machine-Learning-enabled DDoS attacks detectionin P4 programmable networks", *Springer Journal of Network and Systems Management, 30 (21) Nov. 2021*
- <u>Paper objective</u>: detect Distributed Denial of Service (DDoS) attacks
 - input
 - o features extracted from headers of IP packets
 - output
 - labeled "windows" (set of packets within a time frame) indicating if at least one attack packet is present
 - ML algorithms: KNN, SVM, RF, ANN

(a) Detection framework and functional blocks

(b) Traffic window

POLITECNICO MILANO 1863

Source 1

- Features
 - Len(t): average size in bytes of packets in window (t, t + T)
 - R_{TCP}(t): percentage of TCP packets in window (t, t + T)
 - R_{UDP}(t): percentage of UDP packets
 - $R_{TU}(t)$: ratio between TCP and UDP packets in window (t, t+T)
 - Flags(t): percentage of TCP packets with an active SYN flag out of the total in window (t, t + T)

Source 1

Parameter	Value
Traces duration TCP traffic bit rate UDP traffic bit rate IP traffic bit rate	15 minutes 13.5 Mbit/s 11.4 Mbit/s 5.1 Mbit/s 26.5 lubit/s
Attack trainc bit rate Attack Type Window duration Windows distance	20.5 kbit/s SYN flood $T \in \{0.5; 1; 2; 10\}$ seconds $\delta \in \{0.01; 0.05; 0.1; 0.2; 0.5; 1\}$ seconds

• Hyperparameters

Algorithm	Parameter	Tested values	Selected value
KNN	no. of neighbors K neighbors weight	$\{3, 4, 5, 6, 7, 8, 9, 10\}\$ {uniform, distance-based}	3 uniform
RF	splitting criterium no. of trees	{Gini, Entropy} {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}	Gini 10
SVM	kernel regul. param. C kernel coefficient γ	{sigmoid, rbf, polynomial} {1, 10, 10^2 , 10^3 , 10^4 } { 10^{-4} , 10^{-3} , 10^{-2} , 10^{-1} , 1}	rbf 10^{3} 10^{-2}
ANN	no. of hidden layers no. of neurons per layer activation function	{1,2} {5,10,11} {sigmoid, relu, elu}	2 10 elu

Traffic classification Source 1 100%100%**KNN** 99%99%98%98%97%97% $-A \longrightarrow P$ 96%96%R — ***** F1 $0.05 \ 0.1 \ 0.2$ 0.520.010.51 10 δ (s) T (s) (a) Comparison over δ (T = 1 s) (b) Comparison over T ($\delta = 0.2$ s) **ANN** 100%100%99%99%98%98%97%97% $A \rightarrow P$ **---** F1 96%96% 0.5 $\mathbf{2}$ $0.05 \ 0.1 \ 0.2$ 0.5100.011 T (s) δ (s) (b) Comparison over $T \ (\delta = 0.2 \text{ s})$ (a) Comparison over δ (T = 1 s) F. Musumeci: ML Methods for Communication Nets & Systems **POLITECNICO** MILANO 1863

Part II – 9: Flow classification

7

Source 1

• Standalone vs correlated DDoS attack detection (DAD)

POLITECNICO MILANO 1863

Source 2

- Viljoen *et al.*, "Machine Learning Based Adaptive Flow Classification for Optically Interconnected Data Centers", in *ICTON 2016*, July 2016
- <u>Paper objective</u>: optimal flow allocation in multi-tenant DC networks
 - input
 - information retrieved from incoming packets headers (40 packets per flow)
 - output
 - Labeled flows (mice or elephant)
 - ML algorithm: Neural Network

Source 2

- All-electrical DCs: elephant flows* are typically distributed uniformly across the DC links
- Hybrid electrical-optical DCs: elephant flows tend to be assigned to optical links and switches
 - larger bandwidth & lower latency
- Proper classification of mice and elephant flows can be useful to allocate flows to proper resources within a DC (i.e., servers, switches, tx/rx equipment...)
- Misclassification can lead to
 - resource underutilization (mice flows assigned to optical links/switches)
 - lack of resources (bulk data transfer, i.e., elephant flows, assigned to electrical links/switches)

*elephant flows: > 100MB

- NN characteristics
 - 4 hidden layers
 - Features of flows
 - src/dest IP address
 - o src/dest port
 - o protocol
 - o packet size
 - o intra-flow timings (within first 40 packets of a flow)
- NN is compared to existing heuristic approach:
 - Flows increasing their bandwidth more than 10% in 1 second are tagged as "elephant"
- Data set of 24h sampled every 20 minutes
 - 4% traffic flows as elephant (summing to 94% of data transferred)
 - different traffic types dominant at every hour of the day

• Results: mice vs elephant NN-classifier <u>accuracy</u>

POLITECNICO MILANO 1863

- Posults: prodiction
- Results: prediction consistency
 - Lower variance with time evolving situations in true positives obtained w/ NN (aka Multilayer Perceptron, MLP)
 - At most 1h period of performance 5% below the mean (see h16-h17)

POLITECNICO MILANO 1863

Source 3

- Cao *et al.*, "An accurate traffic classification model based on support vector machines", *International Journal on Network Management*, 27:e1962, 2017.
- Paper objective: classify internet traffic from/into a research facility hosting about 1k users
 - input
 - o features extracted from IP packets headers
 - output
 - o labeled flows
 - ML algorithm: SVM

Source 3

- Original dataset¹
 - 240+ features
 - Clt/server port number, IAT, and various statistics...

Original

dataset

- Preprocessed to have normalized features
- PCA to reduce dimensionality
- SVM characteristics
 - 2-class (1 vs all) & multiclass (any vs any)
 - 4 different kernels: linear, polynomial, radial basis function (RBF) and sigmoid
 - Hyperparameters optimized via particle swarm optimization²

¹ Moore AW, *et al.* "Discriminators for use in flow-based classification". *Tech. Rep. RR-05-13, Department of Computer Science, Queen Mary, University of London,* 2005;1–16.

² Tayal VK, Lather JS. Reduced order $H\infty$ TCSC controller & PSO optimized fuzzy PSS design in mitigating small signal oscillations in a wide range. *Int. J. of Electrical Power and Energy Systems*. 2015;68:123–131.

POLITECNICO MILANO 1863

Source 3

• Dataset: 10 different classes (flow-types)

Traffic class	WWW	Mail	FTP-control	FTP-pasv	Attack
Representative applications	HTTP and HTTPS	Pop2/3, smtp, and imap	FTP	FTP	worm and virus
Samples of flows	2999	2999	2990	2989	1793
Traffic class	P2P	Database	FTP-data	Multimedia	Services
Representative applications	Kazaa, BitTorrent, nd Gnutella	Postgres, sqlnet, oracl and ingres	FTP le,	Voice and video streaming	X11, dns, ident, and ntp
Samples of flows	2391	2943	2997	576	2220

Source 3

- Results: impact of SVM-kernel on accuracy
 - Highest Avg accuracy for 2-class is w/ RBF(85%)

	Two-class SVM					
Classifier	WWW	Mail	FTP-control	FTP-pasv	Attack	
Linear	99.9036	87.4839	12.01	30.1816	88.6166	
Polynomial	99.7269	95.5174	75.0321	12.0019	86.8011	
RBF	87.9579	88.1748	88.0141	87.9981	92.794	
Sigmoid	87.9499	82.222	87.982	87.9981	92.794	
	Classifier P2P Database FT					
Classifier	P2P	Database	FTP-data	Multimedia	Services	
Classifier	P2P 52.0566	Database 44.2561	FTP-data 67.0389	Multimedia 64.8538	Services 77.3618	
Classifier Linear Polynomial	P2P 52.0566 84.8249	Database 44.2561 11.8172	FTP-data 67.0389 99.4457	Multimedia 64.8538 95.9672	Services 77.3618 99.0681	
Classifier Linear Polynomial RBF	P2P 52.0566 84.8249 90.4804	Database 44.2561 11.8172 88.3194	FTP-data 67.0389 99.4457 88.3355	Multimedia 64.8538 95.9672 97.6944	Services 77.3618 99.0681 91.5087	

POLITECNICO MILANO 1863

Source 3

- Results: impact of features scaling on accuracy
 - 2-class RBF only: accuracy >94% (max =99.8%)

	Two-class SVM				
Classifier	WWW	Mail	FTP-control	FTP-pasv	Attack
Accuracy (%) on original data	87.9579	88.1748	88.0141	87.9981	92.794
Accuracy (%) on scaling data	98.7789	98.9878	98.9798	99.6546	97.5016
Classifier	P2P	Database	FTP-data	Multimedia	Services
Accuracy (%) on original data	90.4804	88.3194	88.3355	97.6944	91.5087
Accuracy (%) on scaling data	94.0312	99.036	99.8233	99.2449	98.6102

POLITECNICO MILANO 1863

Source 3

- Results: impact of dimension reduction (PCA) on accuracy
 - Original dataset

POLITECNICO MILANO 1863

- Results: impact of dimension reduction (PCA) on accuracy
 - Dataset after features scaling (more stable accuracy)

POLITECNICO MILANO 1863