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• Communication networks usually serve heterogeneous traffic flows in terms of:
– protocols (http, ftp, smtp…)
– services (fixed vs mobile, VoD, data transfer, text messages…)
– requirements (latency, bandwidth, jitter…)
– network “customers” (human end-users, companies, sensors, macines, 

servers…)
o E.g., “mice” vs “elephant” flows in Data Centers

• Distinguish between different flows is crucial for resources
(i.e., capacity) allocation, scheduling, security/privacy, QoS…

Network layer domain
Traffic classification
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• Traditional classification uses partial information 
(source/dest IP address, protocol, port number etc.)
– often unavailable (e.g., due to tunneling or 

cryptography)
– sometimes insufficient (e.g., same protocols can 

carry flows with highly different characteristics)
– maybe misleading: different protocols can carry

flows with similar characteristics
• ML 

– enables traffic features extraction from direct
observation of traffic flows

– allows simultaneous use of heterogeneous features
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• F. Musumeci et al., “Machine-Learning-enabled DDoS
attacks detectionin P4 programmable networks”, Springer 
Journal of Network and Systems Management, 30 (21) 
Nov. 2021

• Paper objective: detect Distributed Denial of Service 
(DDoS) attacks
– input

o features extracted from headers of IP packets
– output

o labeled "windows" (set of packets within a time frame) indicating
if at least one attack packet is present

– ML algorithms: KNN, SVM, RF, ANN

Traffic classification
Source 1
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• Features
– Len(t): average size in bytes of packets in window (t, t + T)
– RTCP (t): percentage of TCP packets in window (t, t + T)
– RUDP (t): percentage of UDP packets
– RTU(t): ratio between TCP and UDP packets in window (t, t+T) 
– Flags(t): percentage of TCP packets with an active SYN flag 

out of the total in window (t, t + T)
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• Data set

• Hyperparameters
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• KNN

• ANN
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• Standalone vs correlated DDoS attack detection (DAD)
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• Viljoen et al., “Machine Learning Based Adaptive Flow 
Classification for Optically Interconnected Data Centers”, 
in ICTON 2016, July 2016

• Paper objective: optimal flow allocation in multi-tenant DC 
networks
– input

o information retrieved from incoming packets headers (40 
packets per flow)

– output
o Labeled flows (mice or elephant)

– ML algorithm: Neural Network

Traffic classification
Source 2
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• All-electrical DCs: elephant flows* 
are typically distributed uniformly
across the DC links

• Hybrid electrical-optical DCs: 
elephant flows tend to be assigned
to optical links and switches

– larger bandwidth & lower
latency

• Proper classification of mice and 
elephant flows can be useful to 
allocate flows to proper resources
within a DC (i.e., servers, switches, 
tx/rx equipment…)

Traffic classification
Source 2
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*elephant flows: > 100MB

• Misclassification can lead to
– resource underutilization (mice flows assigned to optical

links/switches)
– lack of resources (bulk data transfer, i.e., elephant flows, 

assigned to electrical links/switches)
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• NN characteristics
– 4 hidden layers
– Features of flows

o src/dest IP address
o src/dest port
o protocol
o packet size
o intra-flow timings (within first 40 packets of a flow)

• NN is compared to existing heuristic approach:
– Flows increasing their bandwidth more than 10% in 1 second 

are tagged as “elephant”
• Data set of 24h sampled every 20 minutes

– 4% traffic flows as elephant (summing to 94% of data 
transferred)

– different traffic types dominant at every hour of the day

Traffic classification
Source 2
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• Results: mice vs elephant NN-classifier accuracy

Traffic classification
Source 2
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Flow 
classification:
+22% wrt
heuristic

Per-byte
classification:
+22% wrt
heuristic
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• Results: prediction consistency
– Lower variance with time evolving situations in true positives

obtained w/ NN (aka Multilayer Perceptron, MLP)
– At most 1h period of performance 5% below the mean (see

h16-h17)

Traffic classification
Source 2
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• Cao et al., “An accurate traffic classification model based 
on support vector machines”, International Journal on 
Network Management, 27:e1962, 2017.

• Paper objective: classify internet traffic from/into a 
research facility hosting about 1k users
– input

o features extracted from IP packets headers
– output

o labeled flows
– ML algorithm: SVM

Traffic classification
Source 3
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Traffic classification
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• Original dataset1
– 240+ features

o Clt/server port number, IAT, 
and various statistics…

– Preprocessed to have
normalized features

• PCA to reduce dimensionality
• SVM characteristics

– 2-class (1 vs all) & multiclass
(any vs any)

– 4 different kernels: linear, 
polynomial, radial basis
function (RBF) and sigmoid
o Hyperparameters optimized

via particle swarm
optimization2

1 Moore AW, et al. “Discriminators for use in flow‐based
classification”. Tech. Rep. RR‐05‐13, Department of Computer
Science, Queen Mary, University of London, 2005;1–16.

2 Tayal VK, Lather JS. Reduced order H∞ TCSC controller &
PSO optimized fuzzy PSS design in mitigating small signal
oscillations in a wide range. Int. J. of Electrical Power and
Energy Systems. 2015;68:123–131.
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Traffic classification
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• Dataset: 10 different classes (flow-types)



F. Musumeci: ML Methods for Communication Nets & Systems
Part II – 9: Flow classification

Traffic classification
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• Results: impact of SVM-kernel on accuracy
– Highest Avg accuracy for 2-class is w/ RBF(85%)



F. Musumeci: ML Methods for Communication Nets & Systems
Part II – 9: Flow classification

Traffic classification
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• Results: impact of features scaling on accuracy
– 2-class RBF only: accuracy >94% (max =99.8%)
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Traffic classification
Source 3
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• Results: impact of dimension reduction (PCA) on accuracy
– Original dataset

≈ retained variance
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• Results: impact of dimension reduction (PCA) on accuracy
– Dataset after features scaling (more stable accuracy)

≈ retained variance
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