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• Hard-failures
o Sudden events, e.g., fiber cuts, power outages, etc.
o Unpredictable, require «protection» (reactive procedures)

• Soft-failures:
o Gradual transmission degradation due to equipment

malfunctioning, filter shrinking/misalignment…
o Trigger early network reconfiguration (proactive procedures)

Two main failure types in optical networks
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1. Early detection (When?)
o «Predict» that BER will go above a threshold
o Allows early/quick activation of proactive procedures

2. Identification (Which element?)
o e.g., filter misalignment, laser drift, fiber bending, amplifier malfunctioning ..
o Reduced Mean Time To Repair (MTTR)

3. Localization of soft-failures (Where?)
o e.g., which node/link along the path?

4. Magnitude estimation (How much?)
o Triggers the proper reaction (e.g., device restart/reconfiguration, lightpath

re-routuing, in-field reparation…)

Handling soft-failures
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• How can we predict soft-failures?

Perform continuous monitoring of 
Bit Error Rate (BER) at the receiver…
… until some “anomalies” are detected

Early-detection helps preventing service 
disruption (e.g., through proactive network reconfiguration)

Soft-failure early detection
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• How can we identify the cause of the failure?
– Failures can be caused by different sources

o Filters shrinking/misalignment
o Excessive attenuation (e.g., due to amplifier malfunctioning)
o Laser/photodetectors malfunctioning
o …

Different sources of failure can be distinguished
via the different effects they cause on BER variation
(i.e., via different BER “features”)

Soft-failure cause identification
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• How can we identify the location of the failure?
– A single failure may affect multiple lightpaths
– Leverage information on failure-cause on each lightpath

in combination with routing information
– No need for monitoring in the entire network (monitors

can be deployed only at the receivers)

Soft-failure localization
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• What is the failure magnitude (i.e., severity)?
– Different failures magnitude can affect the network 

differently
– According to the severity, different actions can be 

triggered to solve the failure
o device restart/reconfiguration
o lightpath re-routuing
o in-field reparation…)

Soft-failure magnitude estimation
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1. F. Musumeci et al., “A Tutorial on Machine Learning for Failure 
Management in Optical Networks”, Journal of Lightwave
Technology, vol. 37, n. 16, Aug. 2019

2. S. Shahkarami et al, “Machine-Learning-Based Soft-Failure 
Detection and Identification in Optical Networks,” in OFC 
Conference 2018, pp. M3A–5

• Paper(s) objective: failure detection, cause identification and 
magnitude estimation in optical transmission system

– input
o monitored BER

– output
o failure detection, cause identification and magnitude estimation

– ML algorithms:
o ANN
o SVM
o RF

Failure management
Sources 1-2
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Our study: Optical Network Failure Management 
(ONFM)
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F. Musumeci et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, Journal of Lightwave Technology, 
vol. 37, n. 16, Aug. 2019
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• BER window: two main optimization parameters
– Window duration, W (variable)
– BER sampling period, TBER (=2 seconds in our study)
– Training of the ML algorithms is done for different

combinations of these two params

Window analysis
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Features extracted:
- BER statistics:

- mean
- min/max
- standard dev.
- Peak-to-peak

- Window spectral
components after FFT
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Failure detection
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2. Failure Identification
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Failure identification
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1. Failure Detection

3a. Failure Magnitude
Estimation (Atten.)

3b. Failure Magnitude
Estimation (Filtering)
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Failure magnitude estimation
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2. Failure Identification
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• Testbed for real BER traces
– Ericsson 80 km transmission system 

o 24 hours BER monitoring
o 2 seconds sampling interval

– PM-QPSK modulation @ 100Gb/s 
– 2 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable Optical 

Attenuators (VOAs, not shown)
– Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used to emulate 

2 types of BER degradation:
o Filter misalignment (Filtering)
o Additional attenuation in intermediate span, due to EDFA gain-reduction (Attenuation)

– Different failure magnitudes:
o Filtering: 50-to-26 GHz at steps of 2 GHz
o Attenuation: 0-to-10 dB additional attenuation at steps of 1 dB

Testbed setup (1)
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F. Musumeci et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, Journal of Lightwave Technology, 
vol. 37, n. 16, Aug. 2019
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Results
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Takeway1: Accuracy always increases 
with window duration

Takeway2: Detection 
(finding anomalies) is 
accurate also for in 
short-time windows

Takeway3: Complex tasks 
(e.g., failure-cause 
identification) requires 
more BER info (longer 
windows) to have 
sufficient accuracy

F. Musumeci et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, Journal of Lightwave Technology, 
vol. 37, n. 16, Aug. 2019
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Testbed setup (2)

• Testbed for real BER traces
– Ericsson 380 km transmission system 

o 24 hours BER monitoring
o 3 seconds sampling interval

– PM-QPSK modulation @ 100Gb/s 
– 6 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable Optical 

Attenuators (VOAs)
– Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used to 

emulate 2 types of BER degradation:
o Filter misalignment
o Additional attenuation in intermediate span (e.g., due to EDFA gain-reduction)
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S. Shahkarami et al, “Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks,” in OFC Conference 2018, 
pp. M3A–5
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Numerical results: Detection
Accuracy vs window features
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• Binary SVM

Take-away 1: Higher performance 
with low sampling time
 Fast monitoring equipment is
required

Take-away 2: For 
increasing sampling time, 
longer “Windows” are 
needed for high accuracy

S. Shahkarami et al, “Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks,” in OFC Conference 2018, 
pp. M3A–5
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Numerical results: Identification
Accuracy vs window features
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• Neural Network

Take-away 3: To perform 
failure-cause identification, 
much smaller sampling 
period is needed wrt failure 
detection

S. Shahkarami et al, “Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks,” in OFC Conference 2018, 
pp. M3A–5
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A
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• Data collection issues
– lack of monitoring equipment (OSA, etc...) at every 

network node
– costly acquisition of large datasets
– training should be re-done on every link

• Strategy 1: install new monitoring equipment and 
generate failures 

• Strategy 2: acquire OSNR samples from another 
lightpath. However…
– …different data distributions

Transfer Learning: Motivation
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ML requires training phase and its knowledge does not generalize to any condition
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requires lot of effort!!!
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Option 1: [Pure TL] no samples from B (target domain) available
 TRAIN with samples of A (source domain) and TEST with samples of B (target domain)

Option 2: [Domain Adaptation (DA)] a few samples from B are available
 TRAIN with (many) samples of A and (few) of B, and TEST with samples of B

Many
samples

Few
samples

Transfer Learning (TL): Principles 
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Our algorithm
DA+CORAL*

*Baochen Sun, Jiashi Feng, and Kate Saenko. “Return of Frustratingly Easy Domain Adaptation”. In Prof. Of AAAI'16:: (Nov. 2015).
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• Opt. Net. testbed @NICT Sendai w/ 4 ROADMs
• Data collected for 3 lightpaths at the receiver sites (pre-amp)
• Center-wavelength @194.8 THz, BW=100 GHz
• 6 hours of measurement per lightpath
• Sampling time: TOSNR = 1 s
• 10 Gbps, OOK modulation

Testbed Setup
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1. Target Domain Only (TD Only) 
– trains the classifier using all labeled data points in the 

target domain (|TD|=5000 windows)
– represents an “upper bound” on identification accuracy

2. Source Domain (SD Only)
– trains the classifier only on source domain data 

(|SD|=5000 windows), then test on the TD data
– equivalent to Pure Transfer Learning

Baseline scenarios
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TL-assisted failure-cause identification: results
Window size = 20sec
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F. Musumeci et al., “Transfer Learning across Different Lightpaths for Failure-Cause Identification in Optical Networks”, ECOC 2020
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