

Machine Learning Methods for Communication Networks and Systems

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

Part II – 8: Failure management

Two main failure types in optical networks

- Hard-failures
 - Sudden events, e.g., fiber cuts, power outages, etc.
 - Unpredictable, require «protection» (reactive procedures)
- Soft-failures:
 - Gradual transmission degradation due to equipment malfunctioning, filter shrinking/misalignment...
 - Trigger early network reconfiguration (proactive procedures)

POLITECNICO MILANO 1863

Handling soft-failures

- 1. Early detection (When?)
 - «Predict» that BER will go above a threshold
 - Allows early/quick activation of proactive procedures

2. Identification (Which element?)

- o e.g., filter misalignment, laser drift, fiber bending, amplifier malfunctioning ...
- Reduced Mean Time To Repair (MTTR)
- 3. Localization of soft-failures (Where?)
 - o e.g., which node/link along the path?

4. Magnitude estimation (How much?)

Triggers the proper reaction (e.g., device restart/reconfiguration, lightpath re-routuing, in-field reparation...)

Soft-failure early detection

POLITECNICO MILANO 1863

Soft-failure cause identification

- How can we identify the *cause* of the failure?
 - Failures can be caused by different sources
 - Filters shrinking/misalignment
 - o Excessive attenuation (e.g., due to amplifier malfunctioning)
 - Laser/photodetectors malfunctioning

Soft-failure *localization*

- How can we identify the location of the failure?
 - A single failure may affect multiple lightpaths
 - Leverage information on failure-cause on each lightpath in combination with routing information
 - No need for monitoring in the entire network (monitors can be deployed only at the receivers)

POLITECNICO MILANO 1863

Soft-failure magnitude estimation

- What is the failure magnitude (i.e., severity)?
 - Different failures magnitude can affect the network differently
 - According to the severity, different actions can be triggered to solve the failure
 Replace

RX

RX

- o device restart/reconfiguration
- lightpath re-routuing
- o in-field reparation...)

ТΧ

TΧ

POLITECNICO MILANO 1863

Failure management

Sources 1-2

- 1. F. Musumeci *et al.*, "A Tutorial on Machine Learning for Failure Management in Optical Networks", *Journal of Lightwave Technology*, vol. 37, n. 16, Aug. 2019
- 2. S. Shahkarami *et al*, "Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks," in OFC Conference 2018, pp. M3A–5
- <u>Paper(s) objective</u>: failure detection, cause identification and magnitude estimation in optical transmission system
 - input
 - o monitored BER
 - output
 - o failure detection, cause identification and magnitude estimation
 - ML algorithms:
 - o ANN
 - o SVM
 - o RF

Our study: Optical Network Failure Management (ONFM)

F. Musumeci *et al.,* "A Tutorial on Machine Learning for Failure Management in Optical Networks", *Journal of Lightwave Technology*, vol. 37, n. 16, Aug. 2019

Window analysis

- BER window: two main optimization parameters
 - Window duration, W (variable)
 - BER sampling period, T_{BER} (=2 seconds in our study)
 - Training of the ML algorithms is done for different combinations of these two params

POLITECNICO MILANO 1863

Failure detection

POLITECNICO MILANO 1863

Failure identification

POLITECNICO MILANO 1863

Failure magnitude estimation

Testbed setup (1)

- Testbed for real BER traces
 - Ericsson 80 km transmission system
 - \circ 24 hours BER monitoring
 - 2 seconds sampling interval
 - PM-QPSK modulation @ 100Gb/s
 - 2 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable Optical Attenuators (VOAs, not shown)
 - Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used to emulate 2 types of BER degradation:
 - Filter misalignment (*Filtering*)
 - Additional attenuation in intermediate span, due to EDFA gain-reduction (Attenuation)
 - Different failure magnitudes:
 - o *Filtering*: 50-to-26 GHz at steps of 2 GHz
 - Attenuation: 0-to-10 dB additional attenuation at steps of 1 dB

F. Musumeci *et al.,* "A Tutorial on Machine Learning for Failure Management in Optical Networks", *Journal of Lightwave Technology*, vol. 37, n. 16, Aug. 2019

Results

Takeway1: Accuracy always increases with window duration

Window size [minutes]

F. Musumeci *et al.,* "A Tutorial on Machine Learning for Failure Management in Optical Networks", *Journal of Lightwave Technology*, vol. 37, n. 16, Aug. 2019

POLITECNICO MILANO 1863

Testbed setup (2)

- Testbed for real BER traces
 - Ericsson 380 km transmission system
 - o 24 hours BER monitoring
 - 3 seconds sampling interval
 - PM-QPSK modulation @ 100Gb/s
 - 6 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable Optical Attenuators (VOAs)
 - Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used to emulate 2 types of BER degradation:
 - o Filter misalignment
 - Additional attenuation in intermediate span (e.g., due to **EDFA gain-reduction**)

S. Shahkarami et al, "Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks," in OFC Conference 2018, pp. M3A–5

S. Shahkarami et al, "Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks," in OFC Conference 2018, pp. M3A–5

Numerical results: Identification

Accuracy vs window features

Neural Network

S. Shahkarami et al, "Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks," in OFC Conference 2018, pp. M3A–5

Transfer Learning: Motivation

ML requires training phase and its knowledge does not generalize to *any* condition

- Data collection issues
 - lack of monitoring equipment (OSA, etc...) at every network node
 - costly acquisition of large datasets
 - training should be re-done on every link
- Strategy 1: install new monitoring equipment and generate failures

COSTLY! Generating soft-failures requires lot of effort!!!

Source

Domain

Transfer Learning (TL): Principles

Option 1: [Pure TL] no samples from B (target domain) available → TRAIN with samples of A (source domain) and TEST with samples of B (target domain)

*Baochen Sun, Jiashi Feng, and Kate Saenko. "Return of Frustratingly Easy Domain Adaptation". In Prof. Of AAAI'16:: (Nov. 2015).

POLITECNICO MILANO 1863

Testbed Setup

- Opt. Net. testbed @NICT Sendai w/ 4 ROADMs
 - Data collected for 3 lightpaths at the receiver sites (pre-amp)
 - Center-wavelength @194.8 THz, BW=100 GHz
 - 6 hours of measurement per lightpath
 - Sampling time: T_{OSNR} = 1 s
 - 10 Gbps, OOK modulation

POLITECNICO MILANO 1863

Baseline scenarios

1. Target Domain Only (TD Only)

- trains the classifier using all labeled data points in the target domain (|TD|=5000 windows)
- represents an "upper bound" on identification accuracy

2. Source Domain (SD Only)

- trains the classifier only on source domain data (|SD|=5000 windows), then test on the TD data
- equivalent to Pure Transfer Learning

TL-assisted failure-cause identification: results *Window size = 20sec*

F. Musumeci et al., "Transfer Learning across Different Lightpaths for Failure-Cause Identification in Optical Networks", ECOC 2020

