

# Machine Learning Methods for Communication Networks and Systems

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

#### Part II – 7: Traffic prediction

### **Network layer domain**

#### **Traffic prediction**

• New network services are featured by high traffic dynamics (variability)





Source 1

- Alvizu *et al.*, "Matheuristic with machine learning-based prediction for software-defined mobile metro-core networks", *Journal of Optical Communication and Networking*, vol. 9 n. 9, Sep. 2017
- <u>Paper objective</u>: periodically predict (i.e., every hour) traffic requirements to perform energy-optimized network resources allocation
  - input
    - Historical traffic data
  - output
    - Traffic requirements for the next period
  - ML algorithm: Neural Network



- Input features
  - hour of the day
  - day of the week
  - holiday/weekend (flag)
  - prev. day average load
  - prev. day load (same hour)
  - prev. week load (same day, same hour)
- Single hidden layer
  - 5 hidden units
  - sigmoidal activation function
- Error backpropagation with gradient descent
- Data samples: TIM Call Detail Records (CDR)
  - 1 record every 10 mins (144 per day)
  - monitoring during Nov.-Dec. 2013





POLITECNICO MILANO 1863

Power/Energy consumption comparison

- Static: resources allocation based on peak traffic
- Hourly-Oracle: hourly reconfigurations, perfect traffic prediction (oracle)
- Hourly-Average: hourly reconfigurations, considering average traffic pattern, and optimized routing with matheuristic
- Hourly-ANN: hourly reconfigurations, **ANN-based traffic** prediction and optimized routing with matheuristic

|                                                          | WP     |          |           |        |  |
|----------------------------------------------------------|--------|----------|-----------|--------|--|
| 16/12/2013                                               | Static | Hourly   | Hourly    | Hourly |  |
|                                                          |        | (Oracle) | (Average) | (ANN)  |  |
| Total Energy (kWh)                                       | 506.88 | 439.28   | 457.66    | 439.76 |  |
| Energy Saving (compared to static)                       |        | 13.3%    | 9.7%      | 13.2%  |  |
| Optimality Gap (with oracle)                             |        |          | 4%        | 0.1%   |  |
| 17/12/2013                                               | Static | Hourly   | Hourly    | Hourly |  |
|                                                          |        | (Oracle) | (Average) | (ANN)  |  |
| Total Energy (kWh)                                       | 506.88 | 442.62   | 457.66    | 444.64 |  |
| Energy Saving (compared to static)                       |        | 12.6%    | 9.7%      | 12.2%  |  |
| Optimality Gap (with oracle)                             |        |          | 3.2%      | 0.45%  |  |
| F. Musumeci: ML Methods for Communication Nets & Systems |        |          |           |        |  |





Part II – 7: Traffic prediction

Source 2

- Troìa *et al.*, "Identification of Tidal-Traffic Patterns in Metro-Area Mobile Networks via Matrix Factorization Based Model", in *PerCom 2017*, Mar. 2017
- <u>Paper objective</u>: extract common traffic patterns in a metropolitan network to characterize Internet traffic
  - input
    - o Internet traffic data
  - output
    - Geographic-related traffic patterns
  - ML algorithm: k-means, spectral clustering, nonnegative matrix factorization



- Datasets exploited
  - Call Detail Records (CDRs): measurements of traffic from Milan TIM cellular network
  - TIM base stations location (OpenCell-ID)
    - o 1728 base stations
  - Locations of Points of Interests (POIs)
  - DUSAF: Database with types of geographical areas
    - used as "ground truth" for evaluation



- 3 COMPANIES
- 4 CULTURE
- 5 RESIDENCES FOR SOCIAL ACTIVITIES
- 6 GOVERNMENT
- 7 TRANSPORT INFRASTRUCTURE
- 8 TECHNOLOGY INFRASTRUCTURE
- 9 ISTRUCTION
- 10 HEALTH
- 11 SOCIAL SERVICE
- 12 SECURITY
- 13 SPORT
- 14 TURISM
- 15 UNIVERSITY AND RESEARCH



Source 2

- Different clustering approaches have been used
  - k-means alone does not provide well-separated clusters
  - Non-negative Matrix Factorization (NMF) + k-means
  - Spectral clustering + NMF
  - Collective NMF (C-NMF) + k-means
- NMF and C-NMF aim at reducing the dimension of data points before applying clustering
  - C-NMF goal: use information on POIs to capture similarities between different cells



#### Source 2

- **CDR Matrix V** [NxT]: traffic information
  - N: number of base stations
  - T : number of time intervals
- **POI Matrix** *P* [*NxM*]: POIs information
  - N: number of base stations
  - M: number of different types of POI
- *H<sub>u</sub>* [*KxT*], *H<sub>s</sub>* [*KxM*]: basis matrices of CDR and POI
- W [NxK]: coefficients matrix
  - captures information from matrices V and P
- Obj. function:

minimize  $\begin{array}{l} O(W,H_u,H_s) = \beta ||V - WH_s||^2 + \alpha ||P - WH_u||^2 + \\ \lambda \left( ||W||^2 + ||H_u||^2 + ||H_s||^2 \right) \end{array}$ 

• when *W* is found, k-means is performed on it



#### Source 2

- Clustering performance metrics\*
  - *Davies-Bouldin (D&B)*: based on the ratio between intracluster and inter-cluster distances (the lower, the better)
  - Calinski Harabasz (CH): based on the ratio between intercluster and intra-cluster distances (the higher, the better)
  - Dunn index: measures the clusters "compactness" (the higher, the better)

 TABLE II

 CLUSTERING INDEXES: Davies-Bouldin (D&B), Calinski Harabasz (CH)

 AND Dunn.

|                     | D&B      | CH       | DUNN                     |
|---------------------|----------|----------|--------------------------|
| KMEANS              | 1.22(12) | 8894(8)  | 0.028(8)                 |
| SPECTRAL CLUSTERING | 2.85(8)  | 6.92(15) | $1.93 \cdot 10^{-7}(29)$ |
| NMF                 | 0.91(38) | 798(4)   | 0.031(38)                |
| C-NMF               | 1.29(30) | 1663(5)  | 0.069(52)                |

\*source: Evgenia Dimitriadou and Dolnicar, Sara and Weingessel, Andreas. An examination of indexes for determining the number of clusters in binary data sets. Psychometrika, 67(1):137–159.



• Pattern analysis





F. Musumeci: ML Methods for Communication Nets & Systems *Part II – 7: Traffic prediction* 

Weekdays

Weekends

3000

2500

е<sup>2000</sup> О 1500

• Pattern analysis





F. Musumeci: ML Methods for Communication Nets & Systems *Part II – 7: Traffic prediction* 

1200

1000 800

600

CDR

-Weekdays Weekends