

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

Part II – 5: Modulation format recognition

Physical layer domain

Modulation format recognition

- Current optical transmitters/receivers are able to operate at different MFs simultaneously
- Automatic MFR
 - Allows MF-dependent digital signal processing and OPM
 - Enables adaptive and dynamically changing MF Tx/Rx

- Traditional MFR requires prior information exchange between end points
 - additional delay for signal detection
- ML enables recognizing MF directly from features of the received signal

Source 1

- Khan *et al.*, "Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks", *Optics Express*, vol. 20 n. 11, May 2012
- Paper objective: recognize modulation format in optical fiber system
 - input
 - Asynchronous Amplitude Histograms (AAHs) of optical signal
 - output
 - Modulation Format
 - ML algorithm: Multi Layer Perceptron (MLP)... a Neural Network

Source 1

- Different MFs lead to different pulse shapes (eyediagrams) and AAHs
 - AAHs do not require synchronized sampling
- AAHs are also affected by CD/PMD/OSNR

Tx. 10 Gbps RZ-OOK Tx. 40 Gbps NRZ-DPSK

Tx. 40 Gbps ODB

Tx. 40 Gbps RZ-DQPSK

Tx. 100 Gbps

PM-RZ-OPSK

Tx. 200 Gbps PM-NRZ-160AM

MFR should be performed independently

EDFA VOA

F. Musumeci: ML Methods for Communication Nets & Systems Part II – 5: Modulation format recognition

sampling

SIL

Source 1

- Single hidden layer
 - nr of hidden nodes chosen by iteratively adding one node and checking MSE
 - Tanh (hidden layer) + sigmoid (output layer) activation functions

Source 1

- Dataset with 26208 (x,y) pairs (AAHs, MF)
 - Changing MF, OSNR, CD, PMD
 - Training-validation-test sets:
 56% 19% 25%
- Error backpropagation stopped at a predefined MSE threshold on the validation set (early stopping)

X

POLITECNICO MILANO 1863

MLP3-ANN

80 Input neurons

38 Hidden neurons

6 Output neurons

LMA-based training

• MFR results: values of vector v for all MFs

- MFR results: confusion matrix
 - overall MFR accuracy 99.06%

Astual	Identified Modulation Format							
Modulation Format	RZ- OOK	NRZ- DPSK	ODB	RZ- DQPSK	PM-RZ- QPSK	PM-NRZ- 16QAM		
RZ-OOK	100%	-	-	-	-	-		
NRZ-DPSK	-	99.81%	-	0.18%	-	-		
ODB	-	-	99.9%	-	-	-		
RZ-DQPSK	-	0.09%	-	97.98%	2.47%	I		
PM-RZ-QPSK	-	-	-	1.83%	97.34%	0.64%		
PM-NRZ-16QAM	-	0.09%	0.09%	-	0.18%	99.35%		

Source 2

- Khan *et al.*, "Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks", *Optical Fiber Technology*, vol. 20 n. 2, Mar. 2014
- <u>Paper objective</u>: recognize modulation format and signal bit rate in optical fiber system
 - input
 - Asynchronous Delay-Tap Plots (ADTPs) of optical signal
 - output
 - Modulation Format
 - ML algorithm: Neural Network

- AAHs are not able to capture timing/slope information
 - it is hard to distinguish between different bit rates signals with same MF
- Solution: Asynchronous Delay-Tap Plots (ADTPs)
 - Essentially, they are joint probability distributions of closely-located samples

time

OSNR = 20 dB,

w/o CD and DGD

 $T_{\rm symbol}$

Amplitude

POLITECNICO MILANO 1863

 p_2

τ

 T_{sampling}

F. Musumeci: ML Methods for Communication Nets & Systems *Part II – 5: Modulation format recognition*

OSNR = 20 dB

DGD = 5 ps

CD = 100 ps/nm

Source 2

- NN with 16 hidden nodes
 - chosen via iterative increse of nodes number until MSE decreases
 - Tangent+sigmoid activation functions
- Error backpropagation stopped at a predefined MSE threshold on the validation in set (early stopping)
- Dataset with 14976 ADTPs
 - Changing bit rate MF, OSNR, CD, DGD
 - Training-validation-test sets:
 33% 11% 56%

Corresponding bit-rates and modulation formats

POLITECNICO MILANO 1863

• MFR results: values of vector v for all MFs

POLITECNICO MILANO 1863

- MFR results: confusion matrix
 - overall MFR accuracy 99.95%

A: 10 Gbps RZ-OOK

B: 20 Gbps RZ-OOK

C: 40 Gbps PM-RZ-QPSK

- D: 100 Gbps PM-RZ-QPSK
- E: 100 Gbps PM-NRZ-16QAM
- F: 200 Gbps PM-NRZ-16QAM

		Predicted bit rate and MF						
		А	В	С	D	E	F	
Actual bit rate and MF	A	100%	-	-	-	-	-	
	В	-	99.93%	-	0.07%	-	-	
	С	-	-	100%	-	-	-	
	D	-	0.14%	0.08%	99.78%	-	-	
	Е	-	-	-	-	100%	-	
	F	-	-	-	-	-	100%	

POLITECNICO MILANO 1863

Source 3

- Tan *et al.*, "Simultaneous Optical Performance Monitoring and Modulation Format/Bit-Rate Identification Using Principal Component Analysis", *Journal of Optical Communications and Networking*, vol. 6 n. 5, May 2014
- <u>Paper objective</u>: recognize modulation format and signal bit rate in optical fiber system
 - input
 - Asynchronous Delay-Tap Plots (ADTPs) of optical signal
 - output
 - Modulation Format
 - ML algorithm: PCA + minimum Euclidean distance

- ADTPs are treated as images with 30x30 bins ("pixels")
 - Each "image" has 900 features

- PCA is used to reduce dimensionality from 900 to "K" principal components
- Dataset w/ 26208 ADTPs split into traing-test sets
 70%-30%; 60%-40%; 50%-50%
- After PCA, MFR is performed on a new sample by reducing its dimensionality and comparing its "new" features vector with the samples in the training set (minimum Euclidean distance)

- PCA: eigenvalues and "retained variance" w/ few PCs
 - 8 PCs are sufficent to have R>98%

POLITECNICO MILANO 1863

• MFR results: confusion matrix

- A: 10 Gbps RZ-OOK
- B: 20 Gbps RZ-OOK
- C: 40 Gbps PM-RZ-QPSK
- D: 100 Gbps PM-RZ-QPSK
- E: 100 Gbps PM-NRZ-16QAM
- overall MFR accuracy w/ 2 PCs is 92.6% F: 200 Gbps PM-NRZ-16QAM

		А	В	С	D	E	F	
Actual bit rate and MF F	A	98.05% (100%)	1.95%	-	-	-	-	
	В	1.81%	98.19% (100%)	-	-	-	-	Accuracy is 100% w/ more
	С	-	-	98.45% (100%)	0.93%	-	0.62%	than 2 components
	D	-	-	1.51%	93.41% (100%)	3.79%	1.29%	
	E	-	-	-	2.76%	83.28% (100%)	13.95%	
	F	-	-	0.39%	0.94%	14.47%	84.2% (100%)	

POLITECNICO MILANO 1863

• Accuracy vs training-test sets proportion and nr of PCs

POLITECNICO MILANO 1863

Source 4

- Khan *et al.*, "Modulation Format Identification in Coherent Receivers Using Deep Machine Learning", *Photonics Technology Letters*, vol. 28 n. 17, Sep. 2016
- <u>Paper objective</u>: recognize modulation format and signal bit rate in optical fiber system
 - input
 - Asynchronous Amplitude Histograms (AAHs) of optical signal
 - output
 - Modulation Format
 - ML algorithm: (Deep) Neural Network

- Different MF and corresponding AAHs
- Deep NN with 2 hidden-layers
 - Each with an autoencoder

QPSK (OSNR = 23 dB)

Bin number

60

80

2500

2000 1500

1000

500

20

No. of occurrences

- Autoencoders are independent 3-layers NN (single hidden layer) trained separately in "unsupervised" manner
 - encoder (layers 1-2) + decoder (layers 2-3)
 - capture hidden features of the inputs (i.e., kind of dimens. reduction)
 - "labels" (y) of Autoenc.-1 correspond to DNN input
 - "labels" (y) of Autoenc.-2 correspond to the outputs of the 1st hidden layer
 - Final step ("fine-tuning"): train using "actual" outputs (i.e., y=MFs)

Dataset: 195 AAHs training : testing = 68% : 32%

• MFR results: values of vector v for all MFs

Source 4

 MFR results: confusion matrix

Identified Modulation Format PM QPSK **PM 16-QAM** PM 64-QAM 19 0 0 Actual Modulation PM QPSK 100% 0% 0% Format 19 0 0 **PM 16-QAM** 0% 100% 0% 22 0 0 **PM 64-QAM** 0% 0% 100% 8 100 🔺 Identification accuracy 99 98 → PM QPSK -A-PM 16-QAM 97 -2-10 2 3 Transmitted power (dBm)

 Effect of transmitted power on MFR accuracy

