

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

Part II – 1: Use cases

Overview of use cases*

- Physical layer domain
 - 1. Quality of Transmission (QoT) estimation
 - 2. Optical performance monitoring (OPM)
 - 3. Optical power control
 - 4. Modulation format recognition
 - 5. Nonlinearities mitigation
- Network layer domain
 - 1. Traffic prediction
 - 2. Failure management
 - 3. Flow classification

*F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, M. Tornatore, "An Overview on Application of Machine Learning Techniques in Optical Networks", in *IEEE Communications Surveys & Tutorials (COMST)*, vol. 21, n. 2, pp. 1383-1408, Secondquarter 2019

Overview of use cases

- Physical layer domain
 - 1. Quality of Transmission (QoT) estimation
 - 2. Optical performance monitoring (OPM)
 - 3. Optical power control
 - 4. Modulation format recognition
 - 5. Nonlinearities mitigation
- Network layer domain
 - 1. Traffic prediction
 - 2. Failure management
 - 3. Flow classification

QoT estimation

- **Before** a new lightpath $(S \rightarrow D)$ is established we should check:
 - if it will meet the desired QoT
 - Low-enough BER? High-enough OSNR?
 - if it will affect the living lightpaths (ongoing traffic requests)
 - Will these connections still meet **their** QoT?
- To answer these questions:
 - Estimate analytically
 - Typically time consuming
 - Involves huge amount of params.
 - Design with margin
 - Approximate models
 - Resources underutilization
 - ML overcomes these problems

Optical performance monitoring

- During signal transmission, quality at the receiver (or even in intermediate spans) is constantly monitored to assess transmission performance
- The behaviour of several parameters is evaluated
 - OSNR, Polarization Mode Dispersion (PMD), Cromatic Dispersion (CD)
 - After a degradation in any of them, different actions can be triggered

- Traditional approaches:
 - involve several monitoring equipment
 - electrical post-processing is often needed
- ML:
 - enables real-time processing of monitored data
 - creates direct relationship between parameters and monitored data (e.g., eye diagram)

Optical power control

- When adding/dropping channels into/from a WDM system, EDFA (Erbium Doped Fiber Amplifiers) gain should be adjusted to have a good balance between channels output power
- This effect is more critical in multiple-span systems

- Analytical models:
 - depend on the specific system (gain-control mechanism, EDFA gain tilt, nr of EDFAs...) and to its variations during lifetime
- ML allows to self-learn together all the parameters of any given system and adapt EDFA's features accordingly

Modulation format recognition

- Current optical transmitters/receivers are able to operate at different MFs simultaneously
- Automatic MFR
 - Allows MF-dependent digital signal processing and OPM
 - Enables adaptive and dynamically changing MF Tx/Rx

- Traditional MFR requires prior information exchange between end points
 - additional delay for signal detection
- ML enables recognizing MF directly from features of the received signal

Nonlinearities mitigation

- Traversing an optical fiber system, optical signal detection can be affected by fiber nonlinearities
 - Kerr effect, self-phase modulation (SPM), cross-phase modulation (XPM)...
 - This limits the transmission distance and degrades BER and transmission quality

- Traditional methods for nonlinearities mitigation require complex mathematical models and prior information on the traversed channel
- ML enables "safer" decision by learning from actual channel properties and allows increased transmission distance

Overview of use cases

- Physical layer domain
 - 1. Quality of Transmission (QoT) estimation
 - 2. Optical performance monitoring (OPM)
 - 3. Optical power control
 - 4. Modulation format recognition

5. Nonlinearities mitigation

- Network layer domain
 - 1. Traffic prediction
 - 2. Failure management
 - 3. Traffic classification

Network layer domain

Traffic prediction

• New network services are featured by high traffic dynamics (variability)

Network layer domain

Failure management

- Early-detection of soft-failures (*gradual* degradation of received signal quality) prevents service disruption
- Quick fault localization is needed for fast equipment repair

- 1+1, 1:1 protection: provision redundant resources
- Alarm-based recovery: failure is repaired after occurrence
- ML
 - creates *direct* relations between observed data and failure occurrence
 - helps reducing overprovisioning
 - enables fast decision-making and fault localization to prevent service disruption and quick fault recovery

Network layer domain

Traffic classification

- Communication networks usually serve heterogeneous traffic flows in terms of:
 - protocols (http, ftp, smtp...)
 - services (fixed vs mobile, VoD, data transfer, text messages...)
 - requirements (latency, bandwidth, jitter...)
 - network "customers" (human end-users, companies, sensors, machines, servers…)
 - E.g., "mice" vs "elephant" flows in Data Centers
- Distinguish between different flows is crucial for resources

(i.e., capacity) allocation, scheduling, security/privacy, QoS...

- Traditional classification uses partial information (source/dest IP address, protocol, port number etc.)
 - often unavailable (e.g., due to tunneling or cryptography)
 - sometimes insufficient (e.g., same protocols can carry flows with highly different characteristics)
 - maybe misleading: different protocols can carry flows with similar characteristics
- ML
 - enables traffic features extraction from direct observation of traffic flows
 - allows simultaneous use of heterogeneous features

