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• Clustering is part of unsupervised 
learning techniques

• Given a set of (unlabeled) examples 
x(i), i=1,2,…,m

• The objective is to find “structures” 
in the data

• Some examples:
– Identify groups of similar users
– Extract common traffic patterns 

from different cells in a mobile 
network

– Market segmentation
• Often used before Classification

Introduction
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• Most popular clustering algorithm
• Iterative approach: randomly choose clusters centroids

– assign examples to clusters and recalculate centroids
– repeat until convergence

K-means
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• More formally…
• Given:

– training examples: x(i)={x1
(i), x2

(i), …, xn
(i)} i=1,2,…,m

– K is the number of clusters (assumed!)
– c(i): index of cluster for observ. x(i) (c(i) can be =1, …, K)

• K-means algorithm:
1. Randomly initialize clusters centroids µ1, µ2, …, µK

2. Repeat until convergence:
a. Cluster assignment: for i=1,2,…,m, c(i)=argminj||x(i)-µj||
b. Update centroids: for j=1,2,…,K, µj=1/nj * Σi:c(i)=j x(i)

where nj is the n. of examples currently assigned to the j-th cluster
• Cost function:

K-means
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• Random centroids initialization
– Different choices may lead to different clusters

o Case 1

K-means
Issues
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• Random centroids initialization
– Different choices may lead to different clusters

o Case 2

• Solution: 
– Perform several random initializations and calculate cost

function J(c;µ)
– Select clustering which provides the lowest J(c;µ)

K-means
Issues
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• Selecting the number of clusters K
– “Elbow” method

– Maximize inter-cluster distance
– Minimize intra-cluster distance
– Combinations of inter/intra cluster distances
– Silhouette coefficient
– Minimize problem-specific cost function

K-means
Issues
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• Clustering is performed according to the dissimilarity between
(groups of) examples
– Euclidean distance is the most used dissimilarity measure

• Iterative approach (bottom-up):
1. Start considering every example as a single-element cluster
2. Check dissimilarity between any pair of examples
3. Group the least dissimilar (i.e., most similar) pair into a 

unique cluster
4. Re-calculate dissimilarity between pairs of clusters

o Need to specify inter-cluster dissimilarity (linkage)
o N.B.: Linkage is different than dissimilarity of two examples

5. Group least dissimilar (i.e., most similar) clusters into a 
unique cluster

6. Repeat steps 4-5 until only one cluster remains
o A dendogram can be drawn

Hierarchical clustering 
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• Tree-based representation of examples and their clustering
– The height of the fusion points is a measure of the 

dissimilarity between the fused clusters (the higher, the more 
dissimilar, i.e., the less similar)
o E.g.: 1-6 are very similar; 9-(2-8-5-7) are very dissimilar

– Final clustering is decided setting a threshold on the fusion 
points

Hierarchical clustering 
Dendogram
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• How do we define inter-cluster (dis)similarity for clusters A & B?
– Complete linkage: compute all pairwise dissimilarities 

between the observations in cluster A and the observations in 
cluster B, and record the largest of these dissimilarities

– Single linkage: compute all pairwise dissimilarities between 
the observations in cluster A and the observations in cluster 
B, and record the smallest of these dissimilarities

– Average linkage: compute all pairwise dissimilarities between 
the observations in cluster A and the observations in cluster 
B, and record the average of these dissimilarities.

– Centroid linkage: dissimilarity between the centroid (mean 
vector) for cluster A and the centroid for cluster B

Hierarchical clustering 
Linkage
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Hierarchical clustering 
Example
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• Maximal inter-cluster 
dissimilarity

(complete linkage)
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Hierarchical clustering 
Effect of linkage on dendograms
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Tips for clustering
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• K-means and hierarchical clustering force every observation into a 
cluster
– clusters obtained may be heavily distorted due to the presence of 

outliers that do not belong to any cluster
– density-based models (mean-shift, DBSCAN) are attractive 

approaches to handle with outliers
• Perform clustering with different choices of these parameters, and 

looking at the full set of results to see what patterns consistently
emerge

• What is the proper cost function to minimize? 
• What is the proper features set?
• Clustering subsets of the data in order to get a sense of the robustness 

of the clusters obtained
– be careful about how to interpret the results of a clustering analysis
– these results should not be taken as the absolute truth about a data 

set
– starting point for the development of a scientific hypothesis and 

further study, preferably on an independent data set
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Features selection for clustering
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• As in classification, DNNs help in automatic features
extraction…BUT…

• How can we use DNN in an unlabelled dataset?
 AUTOENCODERS: symmetrical DNNs

– Trained using outputs = inputs
– Encoder: maps inputs into coded features
– Decoder: reconstructs the inputs from the encoded features

• Coded features can be used as a new features set
– Can be used also in supervised problems to transform features

x1
x2
x3

…

xN

y1=x1
y2=x2
y3=x3

…

yN=xN

y1
y2
y3
…
yM
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Clustering and supervised learning
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• In some cases, clustering can be useful also for supervised
problems
– to obtain "better" features (separate classes more clearly)
– to reduce dimensionality

o another method is Principal Component Analysis (PCA), which uses
linear transformation of original features

• It can be a basis for building an "automatic data labeler"
– Semi-supervised learning and data augmentation

• How to evaluate if such features transformation is appropriate?
– Usual clustering cost functions must be considered anyway, 

but…
– We have knowledge of the labelled data: 

o how can we leverage this information?
o are we changing the features space inappropriately? How to 

measure this numerically?
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Clustering and supervised learning

Class 1

Class 2

Class 3

Class 4

Old features

Ideal case 
Clustering w/ new 

(transformed) features

Old features

Non-ideal case 
Clustering w/ new 

(transformed) features

To measure this
inconsistency:

Rand Index
Adjusted Rand Index

Ideal case 
Transformed features

Non-ideal case 
Transformed features
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Clustering and supervised learning

• Rand index: • Adjusted Rand index :
• Given a set S of n elements, and two 

clustering:

the overlap between X and Y can be summarized in a 
contingency table, where each entry denotes the 
number of elements in common between

• Contingency table

• So the ARI is calculated as:

a: Number of pairs of elements that are in 
the same cluster in the original dataset and 

also after clustering

b: The number of pairs 
of elements that are in 
different clusters in the 
original dataset but fall 

in the same cluster after 
doing clustering

Y: Clustering

X: original 
dataset
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R ∈ [0, 1]
ARI ∈ [-1, 1]
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• ARI = 1
n = 9

ARI: notable values

Ground Truth
Clustering after features 

transformation

• ARI = 0
n = 9

• ARI → -1
n → ∞
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