

Machine Learning Methods for Communication Networks and Systems

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

Part I – 5: Clustering

Outline

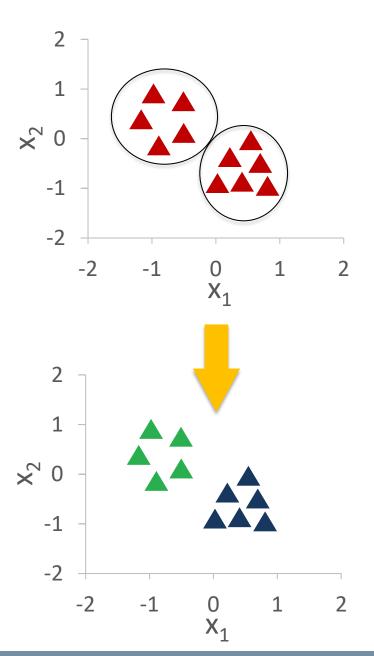
- Introduction
- K-means
- Hierarchical clustering
- Tips for clustering

Outline

- Introduction
- K-means
- Hierarchical clustering
- Tips for clustering

Introduction

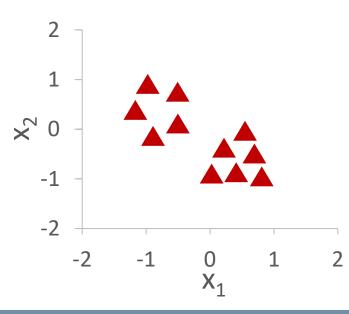
- Clustering is part of *unsupervised* learning techniques
- Given a set of (unlabeled) examples
 <u>x</u>⁽ⁱ⁾, *i*=1,2,...,*m*
- The objective is to find "structures" in the data
- Some examples:
 - Identify groups of similar users
 - Extract common traffic patterns from different cells in a mobile network
 - Market segmentation
- Often used before Classification



Outline

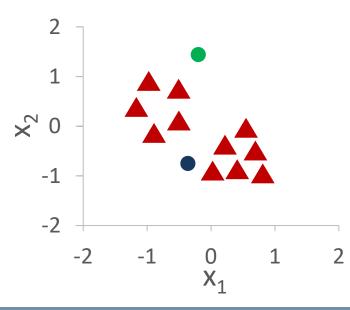
- Introduction
- K-means
- Hierarchical clustering
- Tips for clustering

- Most popular clustering algorithm
- Iterative approach: randomly choose clusters *centroids*
 - assign examples to clusters and recalculate centroids
 - repeat until convergence



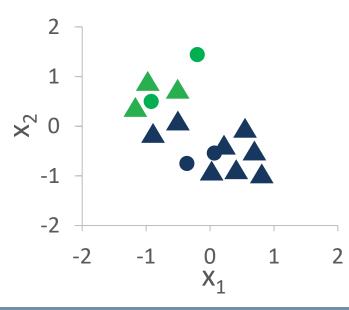
POLITECNICO MILANO 1863

- Iterative approach: randomly choose clusters centroids
 - assign examples to clusters and recalculate centroids
 - repeat until convergence



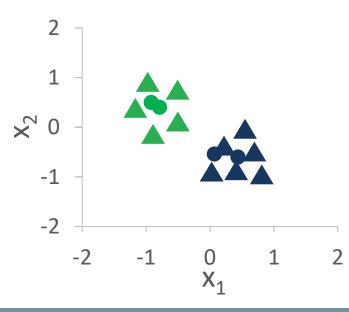
POLITECNICO MILANO 1863

- Iterative approach: randomly choose clusters *centroids*
 - assign examples to clusters and recalculate centroids
 - repeat until convergence



POLITECNICO MILANO 1863

- Iterative approach: randomly choose clusters *centroids*
 - assign examples to clusters and recalculate centroids
 - repeat until convergence

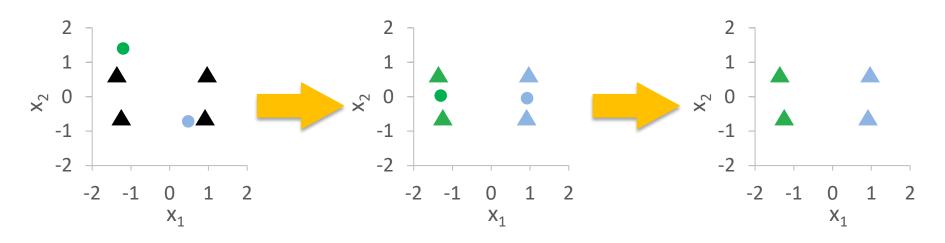


POLITECNICO MILANO 1863

- More formally...
- Given:
 - training examples: $x^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\} i = 1, 2, \dots, m$
 - *K* is the number of clusters (assumed!)
 - $c^{(i)}$: index of cluster for observ. $x^{(i)}$ ($c^{(i)}$ can be =1, ..., K)
- *K*-means algorithm:
 - 1. Randomly initialize clusters centroids $\mu_1, \mu_2, ..., \mu_K$
 - 2. Repeat until convergence:
 - a. Cluster assignment: for i=1,2,...,m, $c^{(i)}=argmin_j||x^{(i)}-\mu_j||$
 - b. Update centroids: for j=1,2,...,K, $\mu_j=1/n_j * \sum_{i:c(i)=j} x^{(i)}$ where n_j is the n. of examples <u>currently</u> assigned to the *j*-th cluster
- **Cost function**: $J(c^{(1)}, c^{(2)}, ..., c^{(m)}; \mu_1, \mu_2, ..., \mu_K) = \frac{1}{m} \sum_{i=1}^m \left\| x^{(i)} \mu_{c^{(i)}} \right\|$

K-means Issues

- Random centroids initialization
 - Different choices may lead to different clusters
 - o Case 1

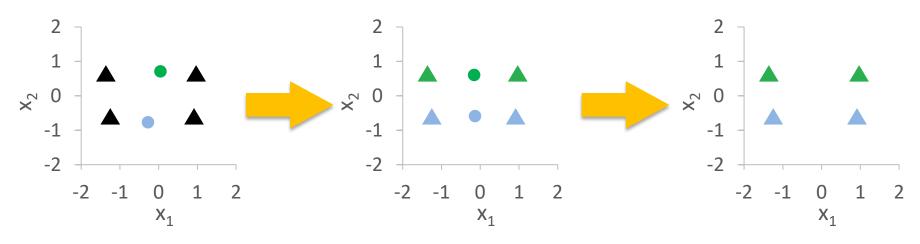


POLITECNICO MILANO 1863

Issues

Random centroids initialization

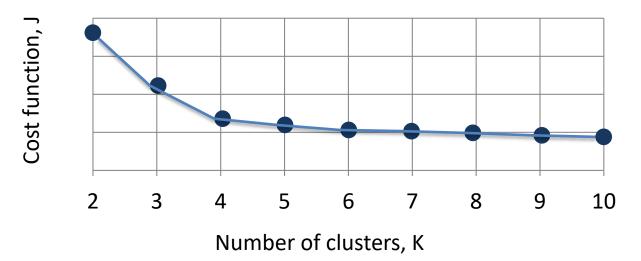
Different choices may lead to different clusters
 o Case 2



- Solution:
 - Perform several random initializations and calculate cost function $J(c;\mu)$
 - Select clustering which provides the lowest $J(c;\mu)$

Issues

- <u>Selecting the number of clusters K</u>
 - "Elbow" method



- Maximize inter-cluster distance
- Minimize intra-cluster distance
- Combinations of inter/intra cluster distances
- Silhouette coefficient
- Minimize problem-specific cost function

Outline

- Introduction
- K-means
- Hierarchical clustering
- Tips for clustering

Hierarchical clustering

- Clustering is performed according to the *dissimilarity* between (groups of) examples
 - Euclidean distance is the most used dissimilarity measure
- Iterative approach (*bottom-up*):
 - 1. Start considering every example as a single-element cluster
 - 2. Check dissimilarity between any pair of examples
 - 3. Group the least dissimilar (i.e., most similar) pair into a unique cluster
 - 4. Re-calculate dissimilarity between pairs of clusters
 - Need to specify <u>inter-cluster</u> dissimilarity (linkage)
 - N.B.: Linkage is different than dissimilarity of two examples
 - 5. Group least dissimilar (i.e., most similar) clusters into a unique cluster
 - 6. Repeat steps 4-5 until only one cluster remains
 - A dendogram can be drawn

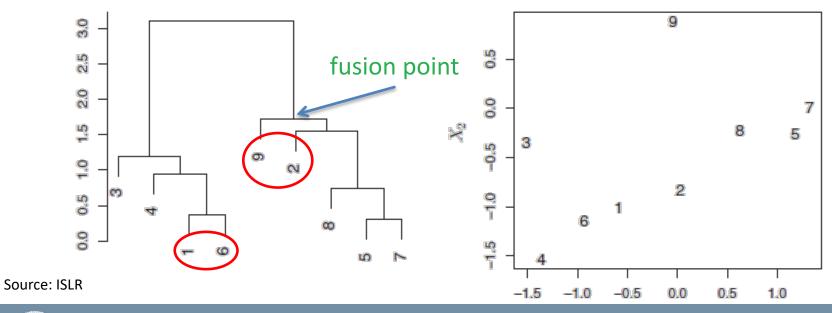
Hierarchical clustering

Dendogram

- Tree-based representation of examples and their clustering
 - The height of the fusion points is a measure of the dissimilarity between the fused clusters (the higher, the more dissimilar, i.e., the less similar)

• E.g.: 1-6 are very similar; 9-(2-8-5-7) are very dissimilar

 Final clustering is decided setting a threshold on the fusion points



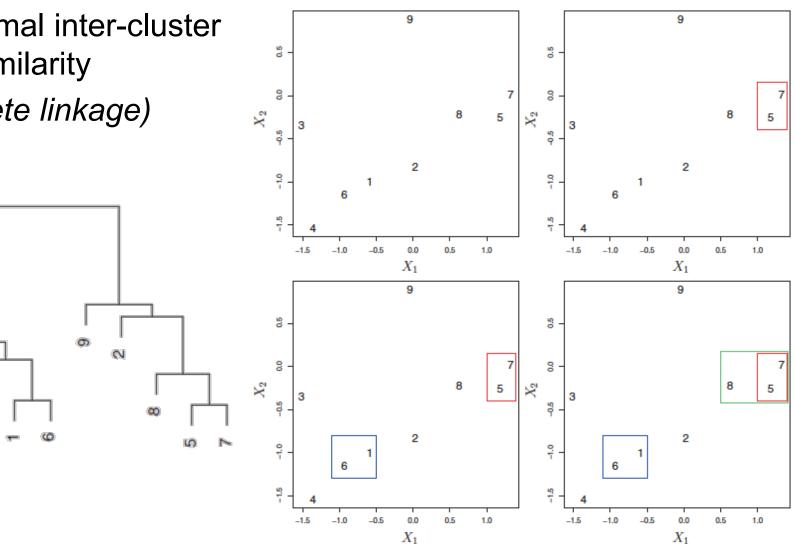
Hierarchical clustering Linkage

- How do we define inter-cluster (dis)similarity for clusters A & B?
 - Complete linkage: compute <u>all pairwise</u> dissimilarities between the observations in cluster A and the observations in cluster B, and record the largest of these dissimilarities
 - Single linkage: compute <u>all pairwise</u> dissimilarities between the observations in cluster A and the observations in cluster B, and record the smallest of these dissimilarities
 - Average linkage: compute <u>all pairwise</u> dissimilarities between the observations in cluster A and the observations in cluster B, and record the average of these dissimilarities.
 - Centroid linkage: dissimilarity between the centroid (mean vector) for cluster A and the centroid for cluster B

Hierarchical clustering Example

Maximal inter-cluster • dissimilarity

(complete linkage)



Source: ISLR

0.0

29 N

20

<u>د</u>

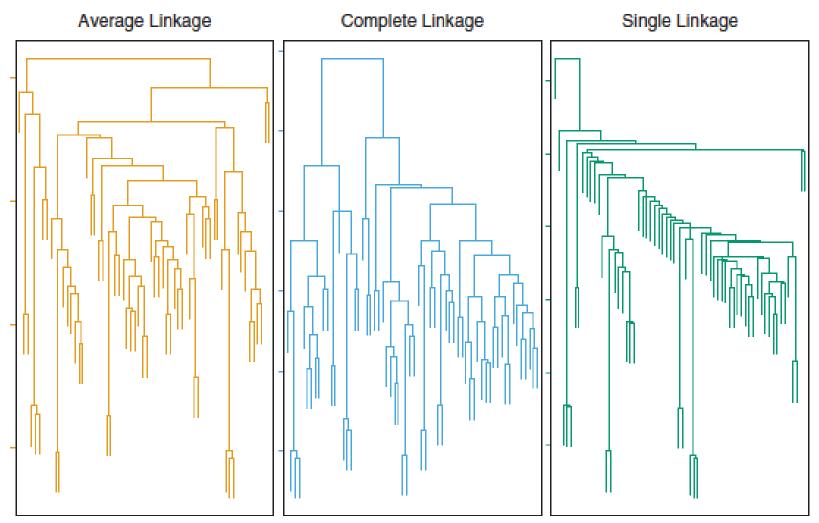
9

0.5

0.0

POLITECNICO MILANO 1863

Hierarchical clustering Effect of linkage on dendograms



Source: ISLR

POLITECNICO MILANO 1863

Outline

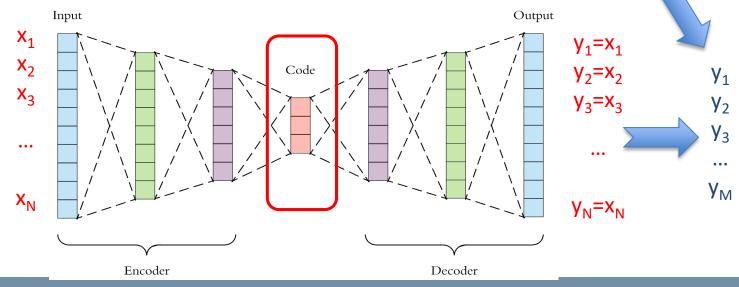
- Introduction
- K-means
- Hierarchical clustering
- Tips for clustering

Tips for clustering

- *K*-means and hierarchical clustering force *every* observation into a cluster
 - clusters obtained may be heavily distorted due to the presence of outliers that do not belong to any cluster
 - density-based models (mean-shift, DBSCAN) are attractive approaches to handle with outliers
- Perform clustering with different choices of these parameters, and looking at the full set of results to see what patterns <u>consistently</u> emerge
- What is the proper cost function to minimize?
- What is the proper features set?
- Clustering subsets of the data in order to get a sense of the robustness of the clusters obtained
 - be careful about how to interpret the results of a clustering analysis
 - these results should not be taken as the absolute truth about a data set
 - starting point for the development of a scientific hypothesis and further study, preferably on an independent data set

Features selection for clustering

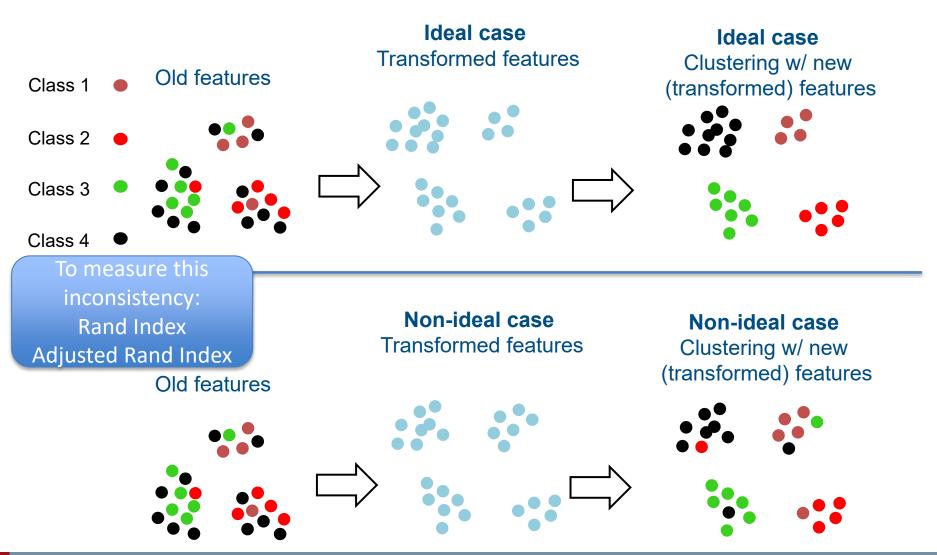
- As in classification, DNNs help in *automatic* features extraction...BUT...
- How can we use DNN in an **unlabelled** dataset?
- → AUTOENCODERS: symmetrical DNNs
 - Trained using outputs = inputs
 - Encoder: maps inputs into coded features
 - Decoder: reconstructs the inputs from the encoded features
- Coded features can be used as a new features set
 - Can be used also in supervised problems to transform features



Clustering and supervised learning

- In some cases, clustering can be useful also for supervised problems
 - to obtain "better" features (separate classes more clearly)
 - to reduce dimensionality
 - another method is Principal Component Analysis (PCA), which uses *linear* transformation of original features
- It can be a basis for building an "automatic data labeler"
 Semi-supervised learning and data augmentation
- How to evaluate if such features transformation is appropriate?
 - Usual clustering cost functions must be considered anyway, but...
 - We have knowledge of the labelled data:
 - \circ how can we leverage this information?
 - are we changing the features space inappropriately? How to measure this *numerically*?

Clustering and supervised learning

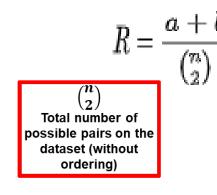


POLITECNICO MILANO 1863

Clustering and supervised learning

Rand index:

a: Number of pairs of elements that are in the same cluster in the original dataset and also after clustering



b: The number of pairs of elements that are in different clusters in the original dataset but fall in the same cluster after doing clustering

- Adjusted Rand index :
 - Given a set S of *n* elements, and two clustering:

$$X=\{X_1,X_2,\ldots,X_r\}$$
 and $Y=\{Y_1,Y_2,\ldots,Y_s\}$

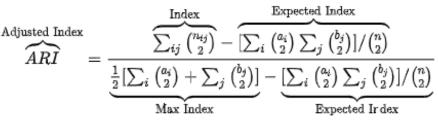
X: original dataset

the overlap between X and Y can be summarized in a **contingency table**, where each entry denotes the number of elements in common between X_i and $Y_j : n_{ij} = |X_i \cap Y_j|$

Contingency table

X^Y	Y_1	Y_2		Y_s	Sums
X_1	n_{11}	n_{12}		n_{1s}	a_1
X_2	n_{21}	n_{22}		n_{2s}	a_2
÷	÷	÷	۰.	÷	:
X_r	n_{r1}	n_{r2}		n_{rs}	a_r
\mathbf{Sums}	b_1	b_2		b_s	

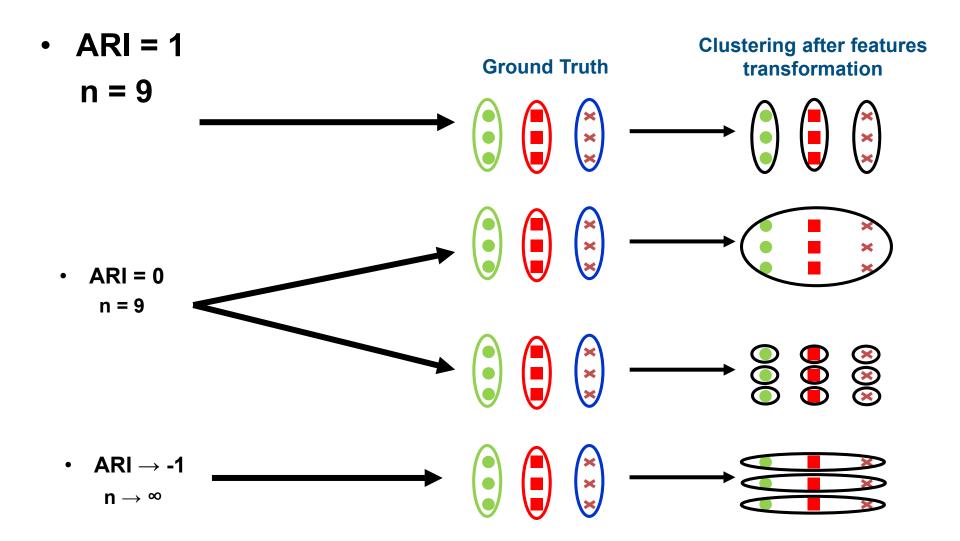
So the **ARI** is calculated as:



R ∈ [0, 1] ARI ∈ [-1, 1]

POLITECNICO MILANO 1863

ARI: notable values



POLITECNICO MILANO 1863