

Machine Learning Methods for Communication Networks and Systems

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

Part I – 3: Neural networks

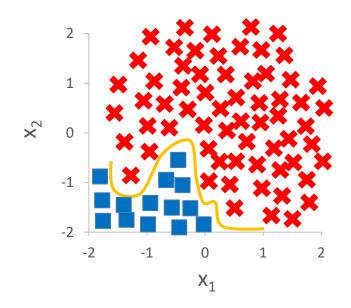
- Introduction
- Neural networks representation
- Multiclass classification
- Parameter learning
- Neural networks for time series

• Introduction

- Neural networks representation
- Multiclass classification
- Parameter learning
- Neural networks for time series

Introduction

- Why do we need a new algorithm?
 - Traditional problems are complex
 - Use of polynomial regression is not always a good solution
 - $_{\odot}\,$ Many features can have a role \rightarrow increased features space



$$h(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + ...)$$

Suppose we have 100 different features and we want to add all quadratic terms:

$$X_1^2, X_1^2, \dots, X_1^2$$

 X_2^2, \dots, X_2^2

$$x_{99}^{2}, x_{99}x_{100}^{2}$$

 x_{100}^{2}

n "original" features require O(n²) quadratic terms!

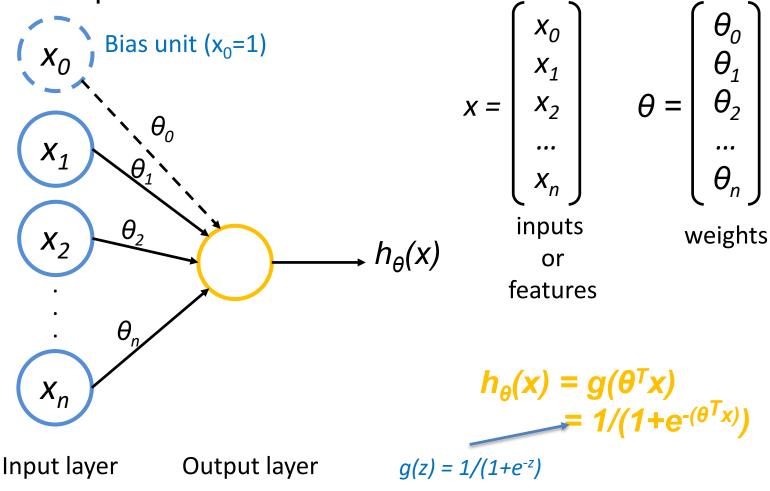
POLITECNICO MILANO 1863

F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*

- Introduction
- Neural networks representation
- Multiclass classification
- Parameter learning
- Neural networks for time series

Neural networks representation *Logistic unit*

• The simplest neural network

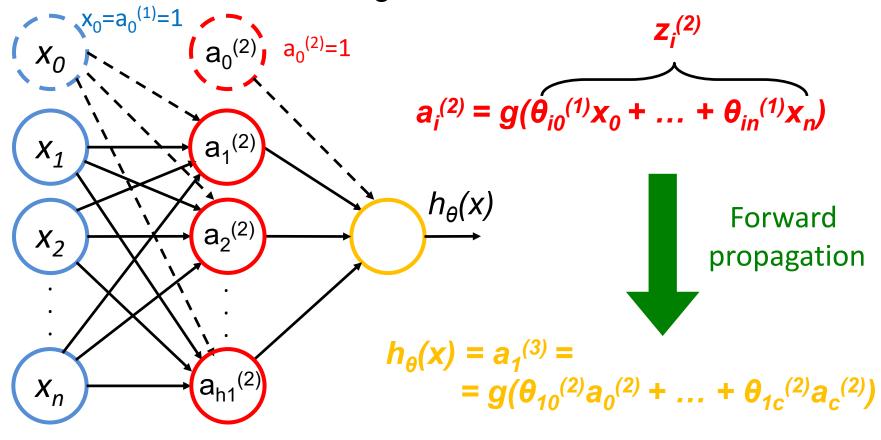


POLITECNICO MILANO 1863

F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*

Neural networks representation Multiple layers

• A "collection" of interacting neurons

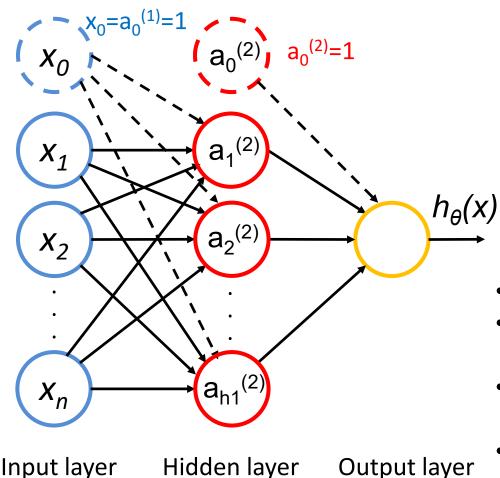


Input layer Hidden layer Output layer

POLITECNICO MILANO 1863

F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*

Neural networks representation Notation



- $x_i = a_i^{(1)}$: *i*-th input unit (feature)
- $a_i^{(l)}=g(z_i^{(l)})$: activation of *i*-th unit in *l*-th layer
 - $z_i^{(l)} = \theta_{i0}^{(l-1)} a_0^{(l-1)} + \dots + \theta_{ic}^{(l-1)} a_c^{(l-1)}$
- Θ^(l): vector of weights between layers / & (l+1)
 - θ_{ij}^(l): weight between *i*-th unit in layer (l+1) and *j*-th unit in layer l

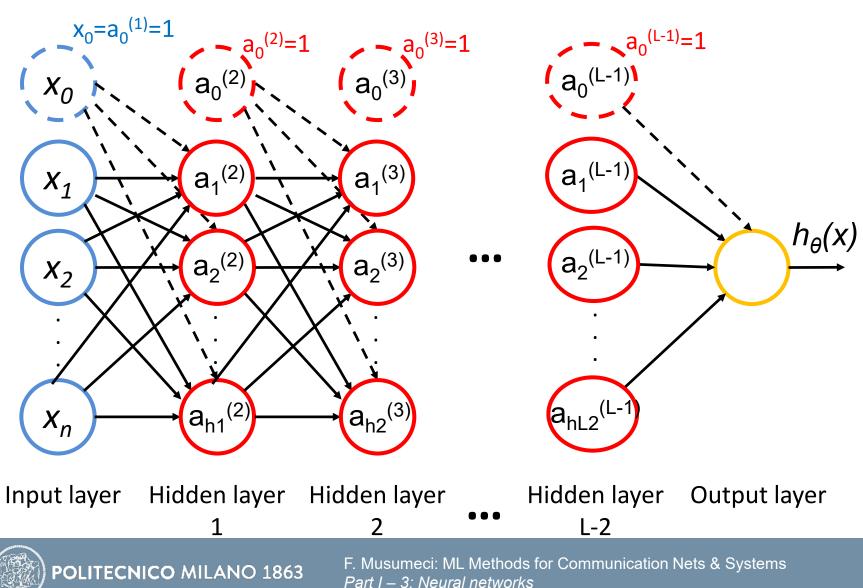
 $h_{\theta}(x) = a_1^{(L)}$: output unit

- *n*: nr. of features
- L: nr. of layers ("L-2" is the nr. of hidden layers)
- *h_l*: nr. of hidden neurons in
 l-th hidden layer
- *g*(•): activation function (e.g., sigmoid)

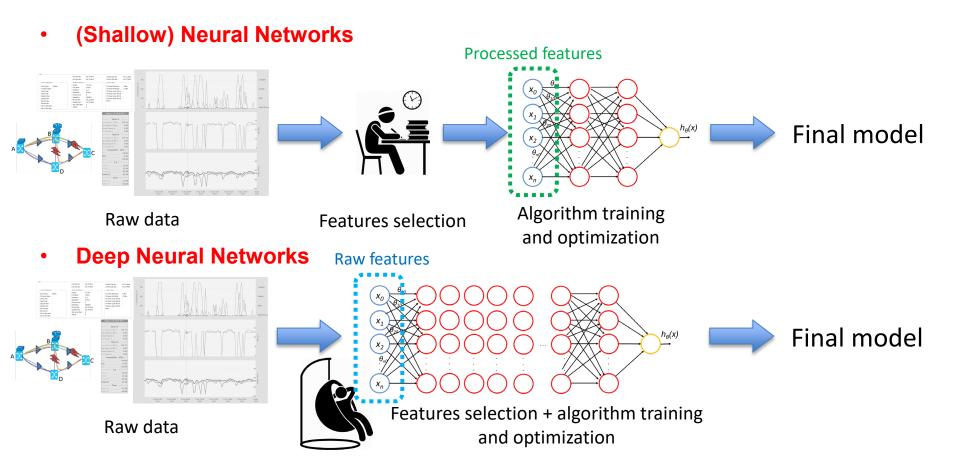
POLITECNICO MILANO 1863

Neural networks representation Deep Neural Networks (DNN)

Many layers increase the chance to discover "hidden" features as nonlinear combination of raw data



Features selection and Deep Neural Networks (DNN)

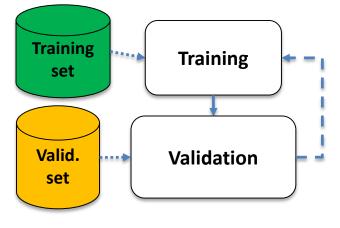


POLITECNICO MILANO 1863

F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*

Neural networks representation Issues with multiple layers

- Different types of neural networks can be designed to capture complex properties of features
- How many hidden layers?
- How many hidden units per layer?
- Same number of units per layer?



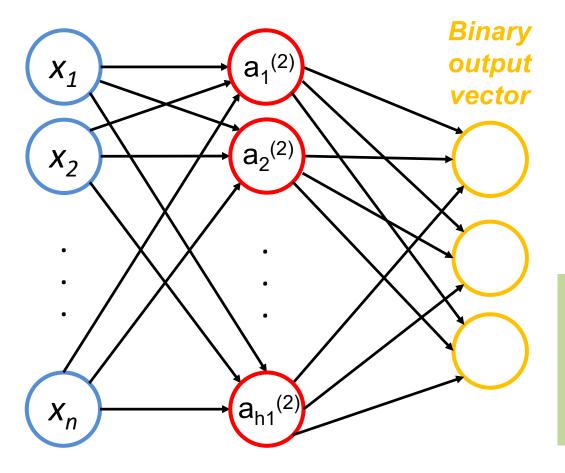
Validation approach, we'll see later in the course

- Which activation function? Same for all the layers?
- Which connections among different layers?

- Introduction
- Neural networks representation
- Multiclass classification
- Parameter learning
- Neural networks for time series

Multiclass classification

• Example with 3 classes



One-hot encoding

$$h_{\theta}(x) = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad \text{Class 1}$$

$$h_{\theta}(x) = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \quad \text{Class 2}$$

$$h_{\theta}(x) = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \quad \text{Class 3}$$

(*x*,*y*) in the training set are objects of one class only, i.e., *y* is a column vector with $y_i=0$, for all $i\neq k$, $y_k=1$ if (*x*,*y*) belongs to class "*k*"

POLITECNICO MILANO 1863

- Introduction
- Neural networks representation
- Multiclass classification
- Parameter learning
- Neural networks for time series

Parameter learning Optimization objective

- How do we choose parameters θ to have a good fit?
- Minimize cost function (as in logistic regression)
 - Cost function used for logistic regression:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

With neural networks (we refer to the general case with multiple classes):

$$h_{\theta}(x) \in \mathbb{R}^{K}; \quad (h_{\theta}(x))_{k} : k^{th} \text{ element of vector } h_{\theta}(x)$$
$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_{k}^{(i)(i)} \log(h_{\theta}(x^{(i)}))_{k} + (1 - y_{k}^{(i)(i)}) \log(1 - (h_{\theta}(x^{(i)}))_{k}) \right] \right]$$

Parameter learning

Backpropagation algorithm

Given the cost function

$$h_{\theta}(x) \in \mathbb{R}^{K}; \quad (h_{\theta}(x))_{k} : k^{th} \text{ element of vector } h_{\theta}(x)$$
$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_{k}^{(i)(i)} \log(h_{\theta}(x^{(i)}))_{k} + (1 - y_{k}^{(i)(i)}) \log(1 - (h_{\theta}(x^{(i)}))_{k}) \right] \right]$$

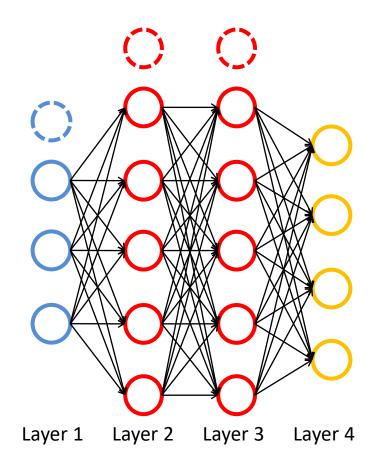
we can iteratively update parameters theta via (e.g.) (batch) gradient descent:

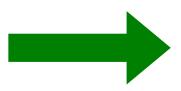
$$\theta_{ij}^{(l)} = \theta_{ij}^{(l)} - \alpha \frac{\partial}{\partial \theta_{ij}^{(l)}} J(\theta)$$

- Problem: compute derivative terms is complex
- → Gradient computation via "Error backpropagation"

Parameter learning Backpropagation algorithm

- Given one training example (x,y)
- <u>Forward</u> propagation steps:
 - $a^{(1)} = x$ (include bias input unit)
 - $z^{(2)} = \Theta^{(1)} a^{(1)}$
 - $a^{(2)} = g(z^{(2)})$ (include bias unit)
 - $z^{(3)} = \Theta^{(2)} a^{(2)}$
 - $a^{(3)} = g(z^{(3)})$ (include bias unit)
 - $z^{(4)} = \Theta^{(3)}a^{(3)}$
 - $a^{(4)} = h_{\theta}(x) = g(z^{(4)})$



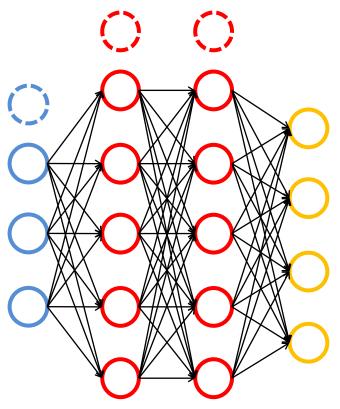


Parameter learning Backpropagation algorithm

- $\delta_j^{(l)}$: error at node *j* of layer *l*
 - recall: $a_i^{(l)} = g(z_i^{(l)})$
 - $z_i^{(l)} = \theta_{i0}^{(l-1)} a_0^{(l-1)} + \dots + \theta_{ic}^{(l-1)} a_c^{(l-1)}$
- <u>Backward</u> error propagation:
 - For units in the output layer

 $\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j} = h_{\theta}(x) - y_{j}$

- For units in hidden layers $\delta_i^{(l)} = \left[\sum_i \theta_{ii}^{(l)} \delta_i^{(l+1)} \right] * \left[a_i^{(l)} * (1 - a_i^{(l)}) \right]$



Layer 1 Layer 2 Layer 3 Layer 4

Example:

 $\delta_{5}^{(3)} = \left[\sum_{i} \theta_{i5}^{(3)} \delta_{i}^{(4)} \right] * \left[a_{5}^{(3)} * (1 - a_{5}^{(3)}) \right] = \left[\theta_{15}^{(3)} \delta_{1}^{(4)} + \theta_{25}^{(3)} \delta_{2}^{(4)} + \theta_{35}^{(3)} \delta_{3}^{(4)} + \theta_{45}^{(3)} \delta_{4}^{(4)} \right] * \left[a_{5}^{(3)} * (1 - a_{5}^{(3)}) \right]$

Parameter learning Backpropagation algorithm

- $\delta_i^{(l)}$: error at node *j* of layer *l*
 - recall: $a_i^{(l)} = g(z_i^{(l)})$
 - $z_i^{(l)} = \theta_{i0}^{(l-1)} a_0^{(l-1)} + \dots + \theta_{ic}^{(l-1)} a_c^{(l-1)}$
- <u>Backward</u> error propagation:
 - For units in the output layer

 $\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j} = h_{\theta}(x) - y_{j}$

- For units in hidden layers

 $\delta_{j}^{(l)} = \left[\Sigma_{i} \, \theta_{ij}^{(l)} \delta_{i}^{(l+1)} \right] * \left[a_{j}^{(l)} * (1 - a_{j}^{(l)}) \right]$

Layer 1 Layer 2 Layer 3 Layer 4

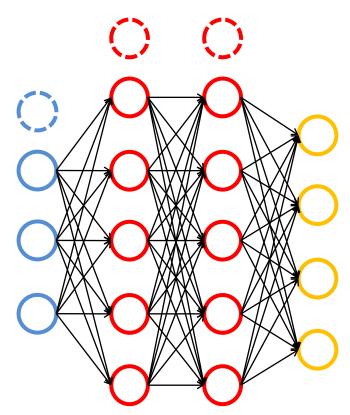
Compute derivatives for gradient descent:

$$\frac{\partial}{\partial \theta_{ij}^{(l)}} J(\theta) = a_j^{(l)} \delta_i^{(l+1)} \quad \forall i, j, l \quad \leftarrow \text{This considers} \\ \text{only one example}$$

Summarizing...

Backpropagation algorithm

- Given a training set w/ m examples {($x^{(1)}, y^{(1)}$), ($x^{(2)}, y^{(2)}$), ..., ($x^{(m)}, y^{(m)}$)}
- Parameter learning steps:
 - Set $\Delta_{ij}^{(l)} = 0$ for all *i*, *j*, *l*
 - For p = 1 to *m* (all training examples) $a^{(1)} = x^{(p)}$
 - Compute a^(l) for all layers I=2,...,L (forward propagation)
 - Set $\delta^{(L)} = a^{(L)} y^{(i)}$
 - Compute $\delta^{(l)}$ for all layers l=L-1,...,2 (backward propagation)
 - Update $\Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ for all (i, j, l)
 - Compute derivatives and update weights:

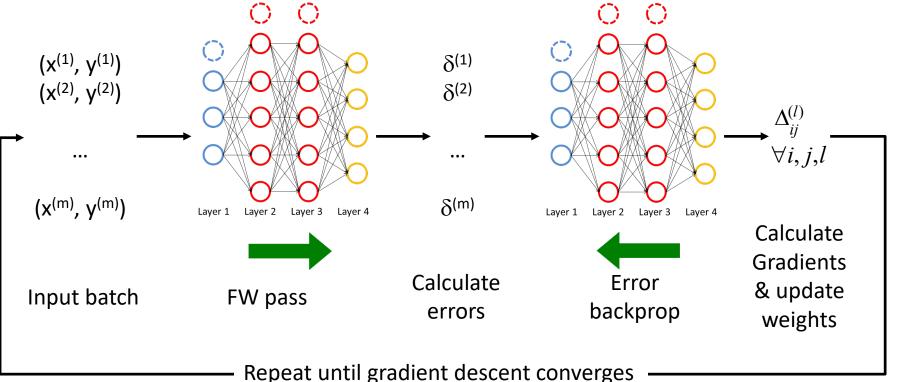


Layer 1 Layer 2 Layer 3 Layer 4

- Introduction
- Neural networks representation
- Multiclass classification
- Parameter learning
 - Batch vs mini-batch gradient descent
- Neural networks for time series

POLITECNICO MILANO 1863

- Parameter learning seen so far is performed computing gradients wrt the <u>entire training set of size m</u>
 - we are using the whole *batch* of *m* training examples at every step of the gradient descent algorithm

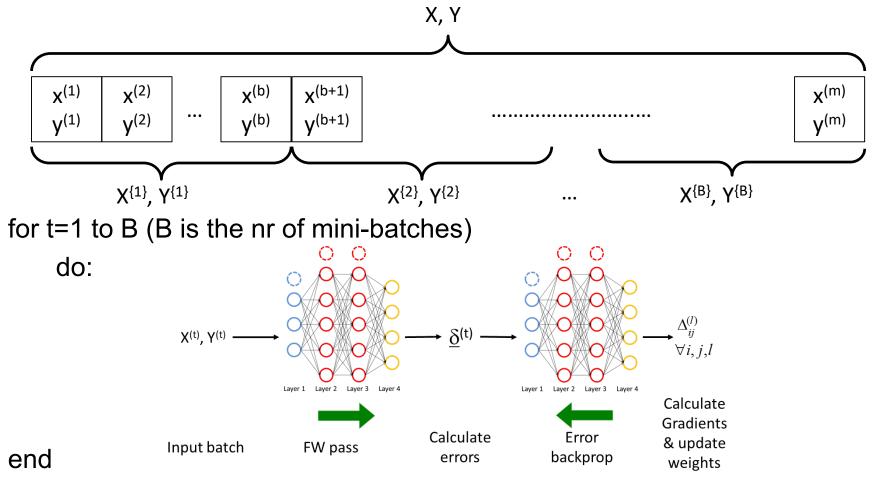


Part I – 3: Neural networks

F. Musumeci: ML Methods for Communication Nets & Systems

22

- Vectorization and matrix multiplication improve the efficiency of gradient descent as they parallelize the computation of gradients
- However, if the dataset is too large, performing backpropagation considering the entire training set can bee computationally intensive
 - huge CPU/memory requirements
 - slow convergence of gradient descent algorithm
- Solution: split the dataset in many parts (mini-batches) and apply gradient descent to one part at a time



(1 epoch = 1 pass over the entire training set)

 Repeat the split and iterate for many epochs until gradient descent converges

- B is the nr of *mini-batches*
 - B = 1 \rightarrow *Batch* gradient descent
 - B = m → Stochastic gradient descent (one point per batch)
- Batch gradient descent
 - Cost function decreases monotonically with epochs
 - Very slow if training size *m* is large
- Stochastic gradient descent
 - Cost function can be very noisy
 - Significant improvement of the cost function can be obtained also for few iterations (pass of few points), but the improvement can be just due to "chance"
- Mini-batch gradient descent can be a good trade-off

- Introduction
- Neural networks representation
- Multiclass classification
- Parameter learning
- Neural networks for time series

- Many applications in networking context, e.g.:
 - Given the hourly traffic in a mobile cell for the last two days, predict traffic for next hour (regression)
 - Given a sequence of measured SNR values, predict if a failure is occurring, and what is the cause (classification)
- Other applications
 - NLP (text/speech recognition, automatic translation...)
 - Sentiment analysis (e.g., predict if a phrase/sentence has positive or negative sense)
 - Image captioning (the sequence is in the output)

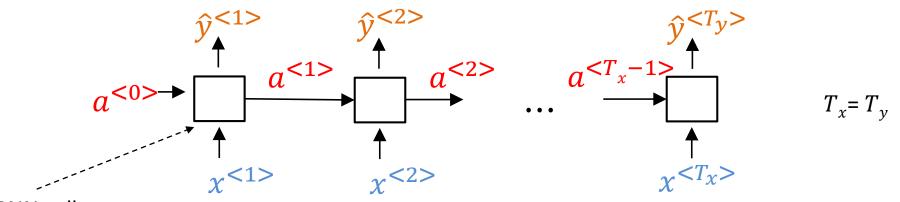
Recurrent neural networks (RNN)

Notation

- $x^{<1>}, x^{<2>}, ..., x^{<T_x>}$ input sequence $(x^{<t>}, t = 1, ..., T_x)$

 \circ T_x is the number of *time-steps* in the input sequence

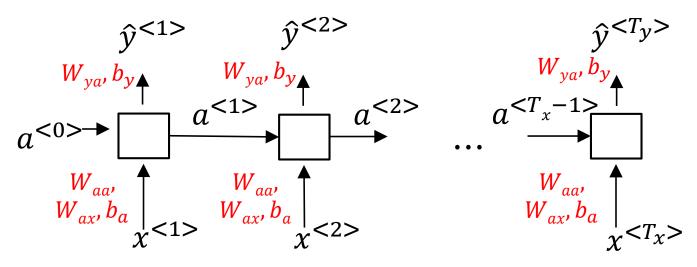
- $\hat{y}^{<1>}, \hat{y}^{<2>}, ..., \hat{y}^{<T_y>}$ output sequence ($\hat{y}^{<t>}, t = 1, ..., Ty$)
 - \circ T_y is the number of *time-steps* in the output sequence
 - \hat{y} is the **predicted** value; the **ground truth is** $y^{<t>}, t = 1, ..., Ty$
 - in general $T_x \neq T_y$
- $a^{<t>}$, activation at time-step t



RNN cell

Source: Andrew Ng

Recurrent neural networks (RNN)



- Parameter sharing: the <u>same weights</u> are used by the RNN cell in all the time steps
 - $a^{<t>} = g_{1}(W_{aa}a^{<t-1>} + W_{ax}x^{<t>} + b_{a})$

 $\circ a^{<0>} = inizialization vector (e.g., zeroes - vector)$

$$- \hat{y}^{} = g_2(W_{ya}a^{} + b_y)$$

Typycal choices: g_1 : tanh, sigmoid g_2 : sigmoid, softmax

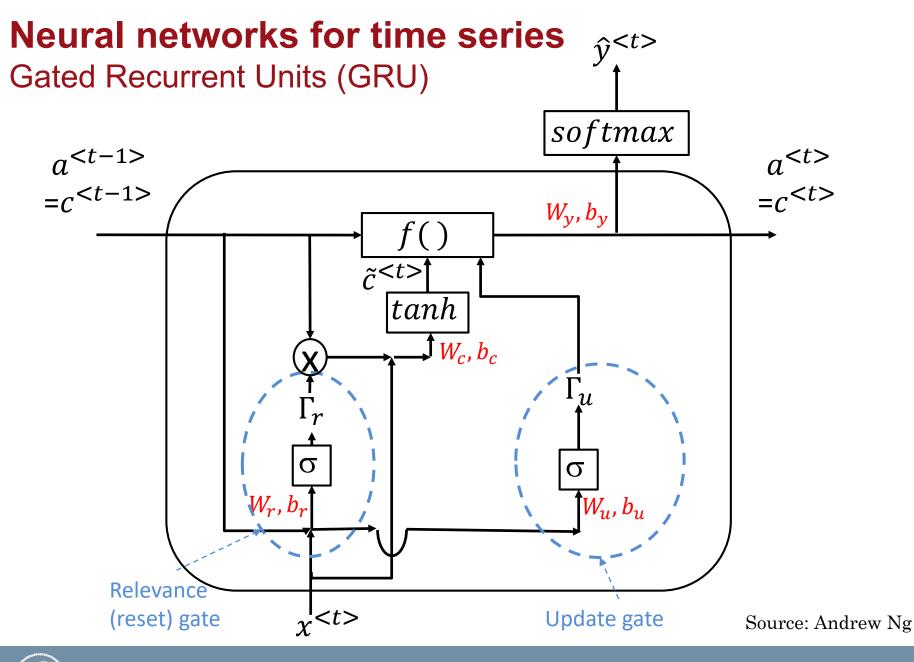
Source: Andrew Ng

Recurrent neural networks (RNN)

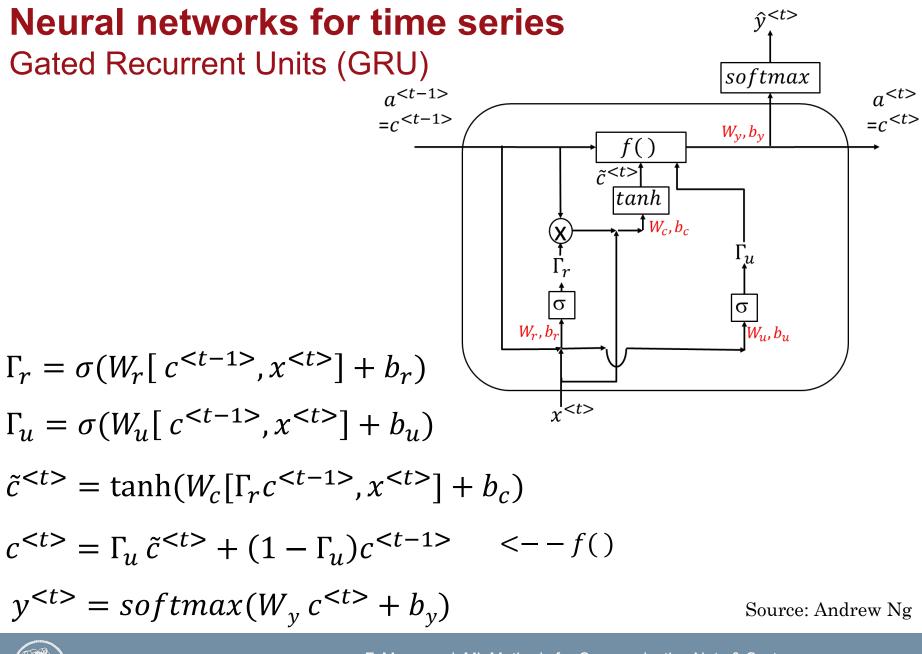
Overview of the RNN cell $\hat{v}^{<t>}$ softmax W_{aa} W_{ν} $a^{< t-1>}$ $a^{<t>}$ tanh $\langle t \rangle$ W_{ax} $\begin{array}{ccc} & & & a^{<t>} = tanh(W_{aa}a^{<t-1>} + W_{ax}x^{<t>} + b_a) \\ & & & \hat{y}^{<t>} = softmax(W_{va}a^{<t>} + b_v) \end{array}$

 $softmax(y_i) = \frac{e^{y_i}}{\sum_i e^{y_i}}$

POLITECNICO MILANO 1863



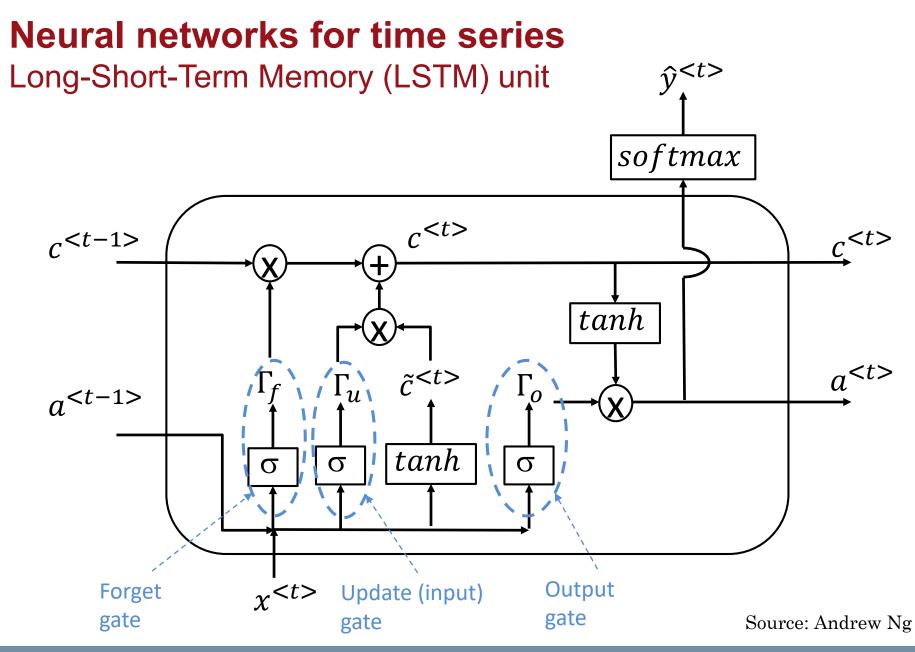
F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*



POLITECNICO MILANO 1863

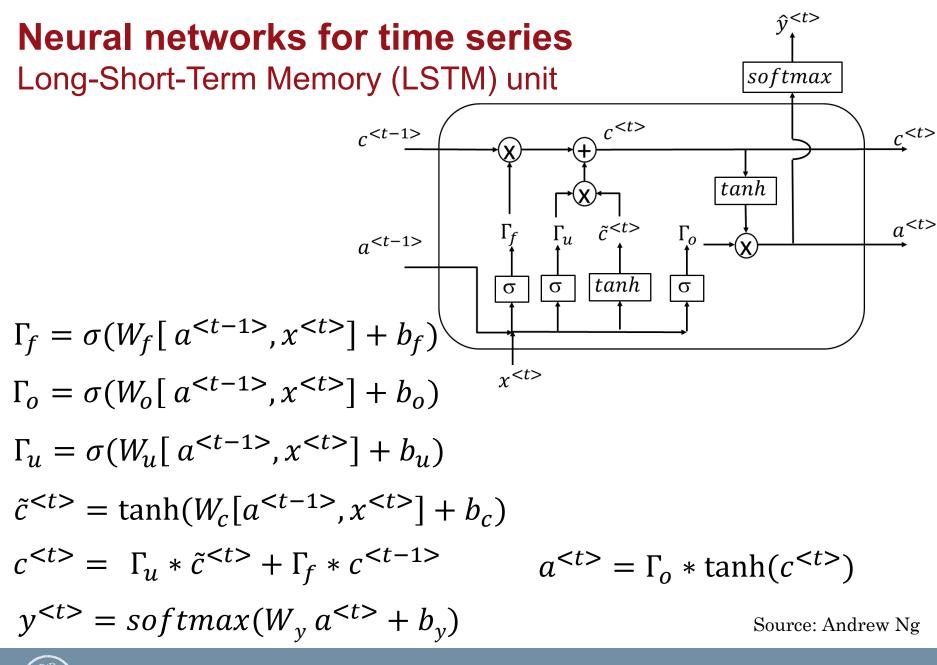
F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*

32



POLITECNICO MILANO 1863

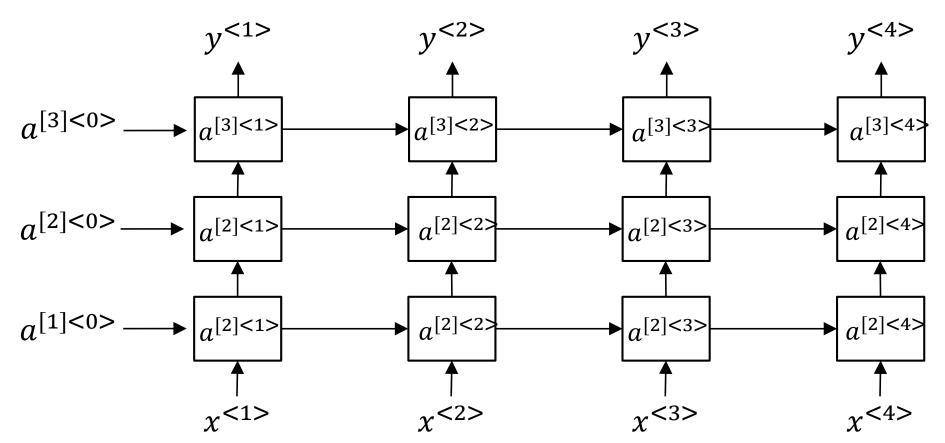
F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*



POLITECNICO MILANO 1863

Neural networks for time series Deep RNNs

• As in DNNs, more hidden layers can be used also in RNNs



Source: Andrew Ng

F. Musumeci: ML Methods for Communication Nets & Systems *Part I – 3: Neural networks*

35