
Part I – 3: Neural networks

Machine Learning Methods for
Communication Networks and
Systems

Francesco Musumeci
Dipartimento di Elettronica, Informazione e Bioingegneria
(DEIB)
Politecnico di Milano, Milano, Italy

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Introduction
• Neural networks representation
• Multiclass classification
• Parameter learning
• Neural networks for time series

Outline

2

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Introduction
• Neural networks representation
• Multiclass classification
• Parameter learning
• Neural networks for time series

Outline

3

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Why do we need a new algorithm?
– Traditional problems are complex
– Use of polynomial regression is not always a good

solution
o Many features can have a role increased features space

Introduction

4

-2

-1

0

1

2

-2 -1 0 1 2

x 2

x1

h(x) = g(θ0 + θ1 x1 + θ2 x2 + θ3 x1
2 + θ4 x2

2 + …)

Suppose we have 100 different features and
we want to add all quadratic terms:
x1

2, x1x2, …, x1x100
x2

2, …, x2x100
…
x99

2, x99x100
x100

2

n “original” features require
O(n2) quadratic terms!

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Introduction
• Neural networks representation
• Multiclass classification
• Parameter learning
• Neural networks for time series

Outline

5

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• The simplest neural network

Neural networks representation
Logistic unit

x1

x2

xn

x0

hθ(x) = g(θTx)
= 1/(1+e-(θTx))

.

.

.

Input layer Output layer

hθ(x)

x0
x1
x2
…
xn

x =

θ0
θ1
θ2
…
θn

θ =
θ0

θ1

θ2

θn

Bias unit (x0=1)

weightsinputs
or

features

6

g(z) = 1/(1+e-z)

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• A “collection” of interacting neurons

Neural networks representation
Multiple layers

x1

x2

xn

x0

.

.

.

.

.

.

a1
(2)

a2
(2)

ah1
(2)

a0
(2)

Input layer Hidden layer Output layer

7

hθ(x) = a1
(3) =

= g(θ10
(2)a0

(2) + … + θ1c
(2)ac

(2))

x0=a0
(1)=1

a0
(2)=1

ai
(2) = g(θi0

(1)x0 + … + θin
(1)xn)

hθ(x) Forward
propagation

zi
(2)

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks representation
Notation

8

• n: nr. of features
• L: nr. of layers (“L-2” is the

nr. of hidden layers)
• hl: nr. of hidden neurons in

l-th hidden layer
• g(•): activation function

(e.g., sigmoid)

• xi=ai
(1): i-th input unit (feature)

• ai
(l)=g(zi

(l)): activation of i-th
unit in l-th layer
• zi

(l) = θi0
(l-1)a0

(l-1) + …
+ θic

(l-1)ac
(l-1)

• Θ(l): vector of weights
between layers l & (l+1)
• θij

(l): weight between i-th unit
in layer (l+1) and j-th unit in
layer l

• hθ(x) = a1
(L): output unit

x1

x2

xn

x0

.

.

.

.

.

.

a1
(2)

a2
(2)

ah1
(2)

a0
(2)

Input layer Hidden layer Output layer

x0=a0
(1)=1

a0
(2)=1

hθ(x)

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks representation
Deep Neural Networks (DNN)

9

x1

x2

xn

x0

.

.

.

.

.

.

a1
(2)

a2
(2)

ah1
(2)

a0
(2)

Input layer Hidden layer
1

Output layer

x0=a0
(1)=1 a0

(2)=1

hθ(x)

.

.

.

a1
(3)

a2
(3)

ah2
(3)

a0
(3)

Hidden layer
2

a0
(3)=1

…
.
.
.

a1
(L-1)

a2
(L-1)

ahL2
(L-1)

a0
(L-1)

a0
(L-1)=1

Hidden layer
L-2…

Many layers increase the chance to
discover "hidden" features as non-
linear combination of raw data

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• (Shallow) Neural Networks

• Deep Neural Networks

Features selection and Deep Neural Networks (DNN)

10

Raw data Features selection

Final model

Raw data

Final model

Algorithm training
and optimization

Features selection + algorithm training
and optimization

Processed features

Raw features

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks representation
Issues with multiple layers

11

• Different types of neural networks can be designed to
capture complex properties of features

• How many hidden layers?

• How many hidden units per layer?

• Same number of units per layer?

• Which activation function? Same for all the layers?

• Which connections among different layers?

Training
set

Valid.
set

Training

Validation

Validation approach, we’ll
see later in the course

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Introduction
• Neural networks representation
• Multiclass classification
• Parameter learning
• Neural networks for time series

Outline

12

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Multiclass classification

13

x1

x2

xn

.

.

.

.

.

.

a1
(2)

a2
(2)

ah1
(2)

• Example with 3 classes hθ(x) = Class 1
1
0
0

hθ(x) = Class 2
0
1
0

hθ(x) = Class 3
0
0
1

(x,y) in the training set are
objects of one class only,
i.e., y is a column vector
with yi=0, for all i≠k, yk=1 if
(x,y) belongs to class “k”

Binary
output
vector

One-hot encoding

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Introduction
• Neural networks representation
• Multiclass classification
• Parameter learning
• Neural networks for time series

Outline

14

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Parameter learning
Optimization objective

15

• How do we choose parameters θ to have a good fit?
• Minimize cost function (as in logistic regression)

– Cost function used for logistic regression:

– With neural networks (we refer to the general case with
multiple classes):

[]∑
=

−−+−=
m

i

iiii xhyxhy
m

J
1

)()()()())(1log()1())(log(1)(θθθ

[]

−−+−=

∈

∑∑
= =

m

i

K

k
k

iii
kk

iii
k

th
k

K

xhyxhy
m

J

xhkxhRxh

1 1

)()()()()()()))((1log()1())(log(1)(

)(vector ofelement :))((;)(

θθ

θθθ

θ

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Parameter learning
Backpropagation algorithm

16

• Given the cost function

we can iteratively update parameters theta via (e.g.) (batch)
gradient descent:

• Problem: compute derivative terms is complex
 Gradient computation via “Error backpropagation”

)()(
)()(θ

θ
αθθ Jl

ij

l
ij

l
ij ∂

∂−=

[]

−−+−=

∈

∑∑
= =

m

i

K

k
k

iii
kk

iii
k

th
k

K

xhyxhy
m

J

xhkxhRxh

1 1

)()()()()()()))((1log()1())(log(1)(

)(vector ofelement :))((;)(

θθ

θθθ

θ

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Parameter learning
Backpropagation algorithm

17

• Given one training example (x,y)

• Forward propagation steps:

– a(1) = x (include bias input unit)
– z(2) = Θ(1)a(1)

– a(2) = g(z(2)) (include bias unit)
– z(3) = Θ(2)a(2)

– a(3) = g(z(3)) (include bias unit)
– z(4) = Θ(3)a(3)

– a(4) = hθ(x) = g(z(4))

Layer 1 Layer 2 Layer 3 Layer 4

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Parameter learning
Backpropagation algorithm

18

• δj
(l): error at node j of layer l

• recall: ai
(l)=g(zi

(l))
• zi

(l)= θi0
(l-1)a0

(l-1) + … + θic
(l-1)ac

(l-1)

• Backward error propagation:
– For units in the output layer
δj

(4) = aj
(4) – yj = hθ(x) – yj

– For units in hidden layers
δj

(l) = [Σi θij
(l)δi

(l+1)] * [aj
(l)*(1 – aj

(l))]

Example:
δ5

(3) = [Σi θi5
(3)δi

(4)] * [a5
(3)*(1 – a5

(3))] =
= [θ15

(3)δ1
(4)+θ25

(3)δ2
(4)+θ35

(3)δ3
(4)+θ45

(3)δ4
(4)] * [a5

(3)*(1 – a5
(3))]

Layer 1 Layer 2 Layer 3 Layer 4

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Parameter learning
Backpropagation algorithm

19

• δj
(l): error at node j of layer l

• recall: ai
(l)=g(zi

(l))
• zi

(l)= θi0
(l-1)a0

(l-1) + … + θic
(l-1)ac

(l-1)

• Backward error propagation:
– For units in the output layer
δj

(4) = aj
(4) – yj = hθ(x) – yj

– For units in hidden layers
δj

(l) = [Σi θij
(l)δi

(l+1)] * [aj
(l)*(1 – aj

(l))]
Compute derivatives for gradient descent:

Layer 1 Layer 2 Layer 3 Layer 4

ljiJ l
i

l
jl

ij

,, a)()1()(
)(∀=

∂
∂ +δθ
θ

 This considers
only one example

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Summarizing…
Backpropagation algorithm

20

• Given a training set w/ m examples
{(x(1),y(1)), (x(2),y(2)),…, (x(m),y(m))}
• Parameter learning steps:

– Set ∆ij
(l) = 0 for all i, j, l

– For p = 1 to m (all training examples)
o a(1) = x(p)

o Compute a(l) for all layers l=2,…,L
(forward propagation)

o Set δ (L) = a(L) – y(i)

o Compute δ(l) for all layers l=L-1,…,2
(backward propagation)

o Update ∆ij
(l) = ∆ij

(l)+aj
(l)δi

(l+1) for all (i, j, l)
– Compute derivatives and update

weights:

Layer 1 Layer 2 Layer 3 Layer 4

lji
m

J l
ijl

ij

,, 1)()(
)(∀∆=

∂
∂ θ
θ

)()(
)()(θ

θ
αθθ Jl

ij

l
ij

l
ij ∂

∂−=

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Introduction
• Neural networks representation
• Multiclass classification
• Parameter learning

– Batch vs mini-batch gradient descent
• Neural networks for time series

Outline

21

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Parameter learning seen so far is performed computing gradients wrt
the entire training set of size m
– we are using the whole batch of m training examples at every step

of the gradient descent algorithm

Batch vs mini-batch gradient descent

22

FW pass

(x(1), y(1))
(x(2), y(2))

…

(x(m), y(m))

Input batch

δ(1)

δ(2)

…

δ(m)

Calculate
errors

Error
backprop

Calculate
Gradients
& update
weights

lji

l
ij

,,
)(

∀

∆

Repeat until gradient descent converges

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Vectorization and matrix multiplication improve the
efficiency of gradient descent as they parallelize the
computation of gradients

• However, if the dataset is too large, performing
backpropagation considering the entire training set can bee
computationally intensive
– huge CPU/memory requirements
– slow convergence of gradient descent algorithm

• Solution: split the dataset in many parts (mini-batches) and
apply gradient descent to one part at a time

Batch vs mini-batch gradient descent

23

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

for t=1 to B (B is the nr of mini-batches)
do:

end
(1 epoch = 1 pass over the entire training set)
• Repeat the split and iterate for many epochs until gradient descent

converges

Batch vs mini-batch gradient descent

24

x(1)

y(1)
x(2)

y(2)
x(b)

y(b)… ……………………..… x(m)

y(m)
x(b+1)

y(b+1)

X, Y

X{1}, Y{1} X{2}, Y{2} X{B}, Y{B}…

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• B is the nr of mini-batches
– B = 1 Batch gradient descent
– B = m Stochastic gradient descent (one point per

batch)
• Batch gradient descent

– Cost function decreases monotonically with epochs
– Very slow if training size m is large

• Stochastic gradient descent
– Cost function can be very noisy
– Significant improvement of the cost function can be

obtained also for few iterations (pass of few points), but
the improvement can be just due to "chance"

• Mini-batch gradient descent can be a good trade-off

Batch vs mini-batch gradient descent

25

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Introduction
• Neural networks representation
• Multiclass classification
• Parameter learning
• Neural networks for time series

Outline

26

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Many applications in networking context, e.g.:
– Given the hourly traffic in a mobile cell for the last two

days, predict traffic for next hour (regression)
– Given a sequence of measured SNR values, predict if a

failure is occurring, and what is the cause (classification)

• Other applications
– NLP (text/speech recognition, automatic translation…)
– Sentiment analysis (e.g., predict if a phrase/sentence

has positive or negative sense)
– Image captioning (the sequence is in the output)

Neural networks for time series

27

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Notation
– 𝒙𝒙<𝟏𝟏>,𝒙𝒙<𝟐𝟐>, …, 𝒙𝒙<𝑻𝑻𝒙𝒙> input sequence (𝒙𝒙<𝒕𝒕>, 𝒕𝒕 = 𝟏𝟏, … ,𝑻𝑻𝒙𝒙)

o 𝑇𝑇𝑥𝑥 is the number of time-steps in the input sequence
– �𝒚𝒚<𝟏𝟏>, �𝒚𝒚<𝟐𝟐>, …, �𝒚𝒚<𝑻𝑻𝒚𝒚> output sequence (�𝒚𝒚<𝒕𝒕>, 𝒕𝒕 = 𝟏𝟏, … ,𝑻𝑻𝒚𝒚)

o 𝑇𝑇𝑦𝑦 is the number of time-steps in the output sequence
o �𝑦𝑦 is the predicted value; the ground truth is 𝒚𝒚<𝒕𝒕>, 𝒕𝒕 = 𝟏𝟏, … ,𝑻𝑻𝒚𝒚
o in general 𝑇𝑇𝑥𝑥≠ 𝑇𝑇𝑦𝑦

– 𝒂𝒂<𝒕𝒕>, activation at time-step t

Neural networks for time series
Recurrent neural networks (RNN)

28

⋯𝑎𝑎<0>

𝑥𝑥<1>

�𝑦𝑦<1> �𝑦𝑦<𝑇𝑇𝑦𝑦>

𝑥𝑥<𝑇𝑇𝑥𝑥>
Source: Andrew Ng

𝑥𝑥<2>

�𝑦𝑦<2>

𝑎𝑎<1> 𝑎𝑎<2>
𝑇𝑇𝑥𝑥= 𝑇𝑇𝑦𝑦

𝑎𝑎<𝑇𝑇𝑥𝑥−1>

RNN cell

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Parameter sharing: the same weights are used
by the RNN cell in all the time steps
– 𝑎𝑎<𝑡𝑡> = 𝑔𝑔1 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎<𝑡𝑡−1> + 𝑊𝑊𝑎𝑎𝑥𝑥𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑎𝑎

o 𝑎𝑎<0> = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣 (𝑣𝑣.𝑔𝑔. , 𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑧𝑧 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣)

– �𝑦𝑦<𝑡𝑡> = 𝑔𝑔2(𝑊𝑊𝑦𝑦𝑎𝑎𝑎𝑎<𝑡𝑡> + 𝑏𝑏𝑦𝑦)

Neural networks for time series
Recurrent neural networks (RNN)

29

⋯𝑎𝑎<0>

𝑥𝑥<1>

�𝑦𝑦<1> �𝑦𝑦<𝑇𝑇𝑦𝑦>

𝑥𝑥<𝑇𝑇𝑥𝑥>𝑥𝑥<2>

�𝑦𝑦<2>

𝑎𝑎<1> 𝑎𝑎<2> 𝑎𝑎<𝑇𝑇𝑥𝑥−1>

𝑊𝑊𝑎𝑎𝑎𝑎,
𝑊𝑊𝑎𝑎𝑥𝑥, 𝑏𝑏𝑎𝑎

𝑊𝑊𝑦𝑦𝑎𝑎, 𝑏𝑏𝑦𝑦 𝑊𝑊𝑦𝑦𝑎𝑎, 𝑏𝑏𝑦𝑦 𝑊𝑊𝑦𝑦𝑎𝑎, 𝑏𝑏𝑦𝑦

𝑊𝑊𝑎𝑎𝑎𝑎,
𝑊𝑊𝑎𝑎𝑥𝑥, 𝑏𝑏𝑎𝑎

𝑊𝑊𝑎𝑎𝑎𝑎,
𝑊𝑊𝑎𝑎𝑥𝑥, 𝑏𝑏𝑎𝑎

Source: Andrew Ng

Typycal choices:
𝑔𝑔1 : tanh, sigmoid
𝑔𝑔2 : sigmoid, softmax

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

• Overview of the RNN cell

Neural networks for time series
Recurrent neural networks (RNN)

• 𝑎𝑎<𝑡𝑡> = 𝑖𝑖𝑎𝑎𝑖𝑖𝑡 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎<𝑡𝑡−1> + 𝑊𝑊𝑎𝑎𝑥𝑥𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑎𝑎
• �𝑦𝑦<𝑡𝑡> = 𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑥𝑥(𝑊𝑊𝑦𝑦𝑎𝑎𝑎𝑎<𝑡𝑡> + 𝑏𝑏𝑦𝑦)

x

x

+

x

+

𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑎𝑎<𝑡𝑡−1>
𝑊𝑊𝑎𝑎𝑎𝑎

𝑥𝑥<𝑡𝑡>

𝑊𝑊𝑎𝑎𝑥𝑥

𝑎𝑎<𝑡𝑡> 𝑎𝑎<𝑡𝑡>

𝑊𝑊𝑦𝑦𝑎𝑎

𝑏𝑏𝑦𝑦 𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑥𝑥

�𝑦𝑦<𝑡𝑡>

Source: Andrew Ng

24

𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑥𝑥 𝑦𝑦𝑖𝑖 =
𝑣𝑣𝑦𝑦𝑖𝑖
∑𝑖𝑖 𝑣𝑣𝑦𝑦𝑖𝑖

𝑏𝑏𝑎𝑎

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks for time series
Gated Recurrent Units (GRU)

31

𝑖𝑖𝑎𝑎𝑖𝑖𝑡

𝑎𝑎<𝑡𝑡−1>
=𝑣𝑣<𝑡𝑡−1>

𝑥𝑥<𝑡𝑡>

𝑎𝑎<𝑡𝑡>
=𝑣𝑣<𝑡𝑡>

𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑐𝑐

𝑊𝑊𝑦𝑦 , 𝑏𝑏𝑦𝑦

𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑥𝑥

�𝑦𝑦<𝑡𝑡>

σ

�̃�𝑣<𝑡𝑡>

Γ𝑟𝑟
σ

Γ𝑢𝑢

𝑠𝑠()

𝑊𝑊𝑟𝑟 , 𝑏𝑏𝑟𝑟 𝑊𝑊𝑢𝑢, 𝑏𝑏𝑢𝑢

Source: Andrew Ng
Relevance
(reset) gate Update gate

x

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks for time series
Gated Recurrent Units (GRU)

32

Γ𝑢𝑢 = 𝜎𝜎(𝑊𝑊𝑢𝑢 𝑣𝑣<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑢𝑢)

𝑣𝑣<𝑡𝑡> = Γ𝑢𝑢 �̃�𝑣<𝑡𝑡> + 1 − Γ𝑢𝑢 𝑣𝑣<𝑡𝑡−1>

Γ𝑟𝑟 = 𝜎𝜎(𝑊𝑊𝑟𝑟 𝑣𝑣<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑟𝑟)

�̃�𝑣<𝑡𝑡> = tanh(𝑊𝑊𝑐𝑐[Γ𝑟𝑟𝑣𝑣<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑐𝑐)

𝑦𝑦<𝑡𝑡> = 𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑥𝑥(𝑊𝑊𝑦𝑦 𝑣𝑣<𝑡𝑡> + 𝑏𝑏𝑦𝑦)

<−− 𝑠𝑠()

Source: Andrew Ng

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks for time series
Long-Short-Term Memory (LSTM) unit

33

σ

𝑣𝑣<𝑡𝑡−1>

𝑥𝑥<𝑡𝑡>

𝑣𝑣<𝑡𝑡>

𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑥𝑥

�𝑦𝑦<𝑡𝑡>

�̃�𝑣<𝑡𝑡>Γ𝑓𝑓

𝑖𝑖𝑎𝑎𝑖𝑖𝑡

Γ𝑜𝑜

x +

𝑎𝑎<𝑡𝑡−1>

σ σ

Γ𝑢𝑢

x
𝑎𝑎<𝑡𝑡>

𝑣𝑣<𝑡𝑡>

x
𝑖𝑖𝑎𝑎𝑖𝑖𝑡

Forget
gate

Output
gate

Update (input)
gate Source: Andrew Ng

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks for time series
Long-Short-Term Memory (LSTM) unit

34

Γ𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜 𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑜𝑜)

𝑣𝑣<𝑡𝑡> = Γ𝑢𝑢 ∗ �̃�𝑣<𝑡𝑡> + Γ𝑓𝑓 ∗ 𝑣𝑣<𝑡𝑡−1>

Γ𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑓𝑓 𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑓𝑓)

Γ𝑢𝑢 = 𝜎𝜎(𝑊𝑊𝑢𝑢 𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑢𝑢)

𝑦𝑦<𝑡𝑡> = 𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑥𝑥(𝑊𝑊𝑦𝑦 𝑎𝑎<𝑡𝑡> + 𝑏𝑏𝑦𝑦) Source: Andrew Ng

�̃�𝑣<𝑡𝑡> = tanh(𝑊𝑊𝑐𝑐 𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡> + 𝑏𝑏𝑐𝑐)

𝑎𝑎<𝑡𝑡> = Γ𝑜𝑜 ∗ tanh(𝑣𝑣<𝑡𝑡>)

F. Musumeci: ML Methods for Communication Nets & Systems
Part I – 3: Neural networks

Neural networks for time series
Deep RNNs

35

• As in DNNs, more hidden layers can be used also in RNNs

𝑥𝑥<1> 𝑥𝑥<2> 𝑥𝑥<3> 𝑥𝑥<4>

𝑎𝑎[1]<0>

𝑎𝑎[2]<3> 𝑎𝑎[2]<4>𝑎𝑎[2]<1> 𝑎𝑎[2]<2>𝑎𝑎[2]<0>

𝑦𝑦<1> 𝑦𝑦<2> 𝑦𝑦<3> 𝑦𝑦<4>

𝑎𝑎[3]<3> 𝑎𝑎[3]<4>𝑎𝑎[3]<1> 𝑎𝑎[3]<2>𝑎𝑎[3]<0>

𝑎𝑎[2]<3> 𝑎𝑎[2]<4>𝑎𝑎[2]<1> 𝑎𝑎[2]<2>

Source: Andrew Ng

	Diapositiva numero 1
	Outline
	Outline
	Introduction
	Outline
	Neural networks representation�Logistic unit
	Neural networks representation�Multiple layers
	Neural networks representation�Notation
	Neural networks representation�Deep Neural Networks (DNN)
	Features selection and Deep Neural Networks (DNN)
	Neural networks representation�Issues with multiple layers
	Outline
	Multiclass classification
	Outline
	Parameter learning�Optimization objective
	Parameter learning�Backpropagation algorithm
	Parameter learning�Backpropagation algorithm
	Parameter learning�Backpropagation algorithm
	Parameter learning�Backpropagation algorithm
	Summarizing…�Backpropagation algorithm
	Outline
	Batch vs mini-batch gradient descent
	Batch vs mini-batch gradient descent
	Batch vs mini-batch gradient descent
	Batch vs mini-batch gradient descent
	Outline
	Neural networks for time series
	Neural networks for time series�Recurrent neural networks (RNN)
	Neural networks for time series�Recurrent neural networks (RNN)
	Neural networks for time series�Recurrent neural networks (RNN)
	Neural networks for time series�Gated Recurrent Units (GRU)
	Neural networks for time series�Gated Recurrent Units (GRU)
	Neural networks for time series�Long-Short-Term Memory (LSTM) unit
	Neural networks for time series�Long-Short-Term Memory (LSTM) unit
	Neural networks for time series�Deep RNNs
	Diapositiva numero 36
	Neural networks for spatial structures

