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• Logistic regression is a supervised learning technique used for 
classification problems

• Given the “ground truth” for a set of (labeled) examples (x(i), y(i)), 
i=1,2,…,m (“training set” with m “examples”) 

• Predict the class (category) for new (unlabeled) examples xtest
(i.e., find ytest)
– ytest takes on discrete values

o Binary classifier: y={0;1}, e.g., yes/no, good/bad, spam/non-spam…
o Multiclass classifier: y={A,B,C,…}, e.g., colour, shape, character, 

images…
• General approach: 

– “guess” a model (hypothesis) for function h(x)
– estimate parameters for function h(x)
– perform prediction: h(xtest)=ytest
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• Why not linear regression to predict also discrete values?
– Example: failed lightpaths vs received BER

– Linear hypothesis: h(x) = θ0 + θ1 x (matrix form: h = ΘTX)
– Threshold-based prediction

o If h(x) > threshold  failed lightpath
o If h(x) < threshold  non-failed lightpath
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• Why not linear regression to predict also discrete values?
– Example: failed lightpaths vs received BER

• Problems w/ the linear hypothesis
– Values of h(x) greater than 1 and lower than 0 are meaningless
– Adding “strong” examples worsen the prediction
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• Solution: Logistic regression

• h(x) = g(θ0 + θ1 x) (in matrix form: h = g(ΘTX) )
– g(z) = 1/(1+e-z) is the “logistic” (or “sigmoid”) 

function
o for  z  -inf:  g(z)0
o for  z  +inf:  g(z)1
o for z=0: g(z)=0.5

Binary classification with logistic regression
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• Interpretation of logistic regression

• h(x) = g(θ0 + θ1 x) (in matrix form: h = g(ΘTX) )
– h(x)=p(y=1|Θ;x)

o probability that a new example x belongs to the positive class (e.g., failed 
lightpaths) given the parameters θ0 and θ1

– Prediction for new examples is performed via a threshold on this
probability (e.g., p ≥ 0.5)

Binary classification with logistic regression
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• Prediction with logistic regression
h(x) = g(θ0 + θ1 x) (in matrix form: h = g(ΘTX) )

– θ0 + θ1 x ≥ 0  predict y=1
– θ0 + θ1 x < 0  predict y=0

• Decision boundary: straight line w/ equation
θ0 + θ1 x = 0 

• In multi-dimensional space (e.g., 2 features x1 and x2)

Decision boundary
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• Require adding polynomial features

h(x) = g(θ0 + θ1 x1 + θ2 x2 + θ3 x1
2 + θ4 x2

2 + …)

• Example: circular decision boundary

Decision boundary
Nonlinear decision boundaries
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• How do we choose parameters θi to have a good fit?
– “intuitive” choice: minimize MSE

– problem: MSE is non-convex (has local optima)
• Solution: minimize the new cost function:

where

Parameter learning
Optimization objective
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Parameter learning
Simplified optimization objective
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• Cost function

• Rearranging…

…
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Parameter learning
Gradient descent
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• Given the cost function

• Use gradient descent to minimize cost function J(θ)
– start with (random) initialization of θ (θ0, θ1 if we have

one feature)
– iteratively update θ to reduce J(θ)

– STOP when convergence is reached
• To make a prediction on (i.e., to classify) a new example x:

– Use probability interpretation of:
– Predict y=1 if h ≥ threshold (0 otherw.)
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• Classification with more than two classes
– Examples: distinguish traffic flows, recognize modulation

format…

Logistic regression for multiple classes
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One vs All

h1(x)=p(y=1|Θ;x)

h2(x)=p(y=2|Θ;x)

h3(x)=p(y=3|Θ;x)

Classification for a new 
element xtest: select y=i s.t.

hi(xtest)=p(y=i|Θ;x) 
is maximum
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