

# Machine Learning Methods for Communication Networks and Systems

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

#### **Course Introduction**

### Welcome to the course!

- The lecturer: Francesco Musumeci
  - Office: DEIB building 20, 3rd floor, room 329
  - Contact: <u>francesco.musumeci@polimi.it</u>
  - Web page: <u>https://musumeci.faculty.polimi.it/</u>
  - Main research interests:
    - Machine-Learning-assisted networking
    - 5G and beyond networking
    - Software Defined Networks (SDN) and Network Function Virtualization (NFV)
    - $\circ$  Optical networks architectures
    - Network disasters resilience



### **Course schedule**

- Week 1
  - Dec. 13<sup>th</sup> h. 10-13 + 14-16 (Room Alpha, Bd. 24)
  - Dec. 14<sup>th</sup> h. 9-13 (Seminar room N. Schiavoni, Bd. 20)
  - Dec. 16<sup>th</sup> h. 9-13 (Seminar room N. Schiavoni, Bd. 20)
  - Dec. 17<sup>th</sup> h. 9-13 (Seminar room N. Schiavoni, Bd. 20)
- Week 2
  - Dec. 20<sup>th</sup> h. 9-13 (Seminar room N. Schiavoni, Bd. 20)
  - Dec. 21<sup>st</sup> h. 9-13 (Seminar room N. Schiavoni, Bd. 20)



# **Covered topics**

- The course is organized into two main parts
- Part 1: overview on Machine Learning methodologies
  - Basic concepts (supervised/unsupervised learning, bias/variance trade-off, etc.)
  - Linear and logistic regression
  - Neural Networks
  - Support Vector Machine
  - Clustering

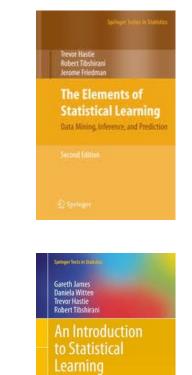
<u>Note</u>: this is NOT a "pure" Machine Learning course. The objective is to learn <u>how to apply</u> ML to <u>your</u> research problems in comm nets and systems

- Part 2: applications of ML to communication nets & systems
  - Part 2a): Physical layer domain use cases
    - QoT estimation, optical power control, modulation format recognition...
  - Part 2b): Network layer domain use cases
    - Traffic prediction, pattern analysis extraction, failure management, virtual topology design,...



### **Course material**

- Lecture slides
- Suggested research papers
- Books (general refs. for ML):
  - T. Hastie, R. Tibshirani, J. Friedman,
    "The Elements of Statistical Learning",
    (ESL) Ed. Springer
  - G. James, D. Witten, T. Hastie, R. Tibshirani, "An Introduction to Statistical Learning with Applications in R", (ISLR) Ed. Springer
- Prof. Andrew Ng lectures (Stanford University)
- ... Google it!



D Springer



### **Course objectives & evaluation**

- At the end of the course you should be able to:
  - identify communication networks & systems use cases where ML can be useful
  - apply proper ML techniques to the use cases
  - evaluate/compare the performance of various ML strategies
  - understand how to select *important* data to use in a ML algorithm
- Two alternatives for the evaluation (student's choice)
  - 1. Research overview: discuss 2 different research papers on the course subject (not seen during the course)
    - Act as a reviewer: present the papers with criticism highliting pros/cons
  - 2. Project to be agreed with the instructor (can be individual or in groups of max 2/3 students)
    - Deliverables: source code and datasets, short report, ppt presentation



### Before we start...

• Any question?



POLITECNICO MILANO 1863

# What is Machine Learning?

- *"Field of study that gives computers the ability to learn without being explicitly programmed" (A. Samuel, 1959)*
- "A type of artificial intelligence (AI) that allows software applications to become more accurate in predicting outcomes without being explicitly programmed"
- *"Teaching a computer to automatically learn concepts through data observation"*
- •
- For our purposes: An *instrument* to build models which allow us to make decisions and to infer statistical properties on our data ...in the context of communication networks and systems
- Why all this attention?
  - Huge availability of data
  - Improved efficiency in computational capabilities
- Sometimes confused with other terms: AI, Deep Learning, Data Analytics, Data Mining, etc.



### Many definitions with blurred borders

#### **Artificial Intelligence**

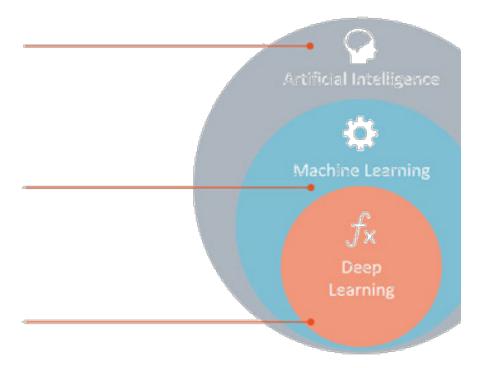
Any technique which enables computers to mimic human behavior.

#### **Machine Learning**

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

#### **Deep Learning**

Subset of ML which make the computation of multi-layer neural networks feasible.



https://www.kdnuggets.com/2017/07/rapidminer-ai-machine-learning-deep-learning.html



POLITECNICO MILANO 1863

# Main categories of ML algorithms (1)

- Supervised learning: we are given "labeled" data (i.e., "ground truth" input/output relationship)
  - <u>Main objective</u>: given a new set of input(s), predict a corresponding output response
  - Regression: output value is continuous
  - Classification: output value is discrete or "categorical"

- Unsupervised learning: available data is not "labeled"

- <u>Main objective</u>: derive structures (patterns) from the available data
- Clustering: finding "groups" in our data, according to a similarity measure
- Anomaly detection (sometimes seen as a semi-supervised method)



# Main categories of ML algorithms (2)

### - Semi-Supervised learning

- Hybrid of previous two categories
- Most of the training samples are unlabeled, only few are labeled
- <u>Main objective</u>: exploit information from unlabeled data to improve accuracy in supervised learning problems
  - Self-training: start with labeled data, then label unlabeled data based on first phase
  - Common when labeled datasets are limited or expensive

### Reinforcement learning

- Available data is not "labeled"
- <u>Main objective</u>: learn a *policy*, i.e., a mapping between inputs/states and actions performed over a certain *environment*
- $\circ~$  Behavior is refined through rewards coming from the system



• Supervised learning: some examples



POLITECNICO MILANO 1863

## **Example in the optical network domain**

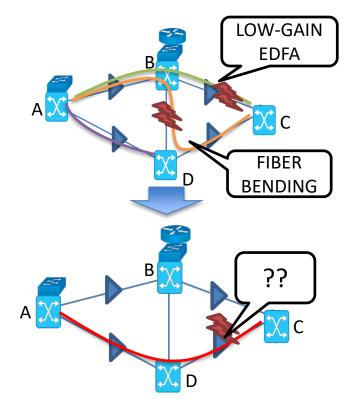
Supervised learning: discriminate failure types (failure identification)

| Sample no.<br>(lightpath) | Wavelength | Route   | Modulation<br>format | BER               | Failure<br>type  |
|---------------------------|------------|---------|----------------------|-------------------|------------------|
| 1                         | 1550 nm    | A-B-C   | BPSK                 | Sharp<br>Increase | Faulty<br>EDFA   |
| 2                         | 1553 nm    | A-B-D-C | QPSK                 | Gradual<br>drift  | Fiber<br>bending |
| 3                         | 1556 nm    | A-D     | 8-QAM                | flat              | None             |
|                           |            |         |                      |                   |                  |

#### **TRAINING PHASE**

#### VALIDATION/TEST PHASE

New fault: wavelength= 1559, route= A-D-C, modulation format= QPSK, BER= cyclic drift → failure type=?





POLITECNICO MILANO 1863

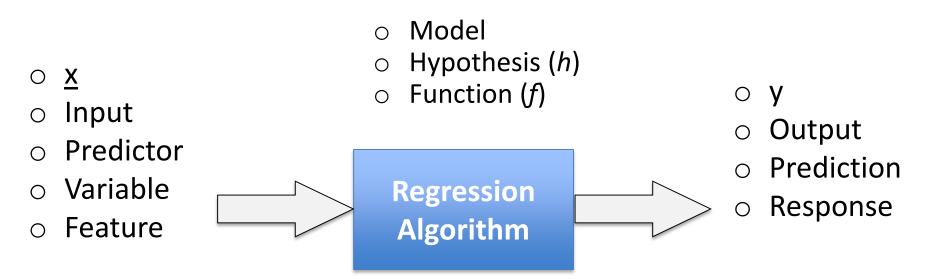
### **Supervised learning: other examples**

- Given traffic exchanges to/from a Data Center during last week/month/year
  - Predict traffic for the next period (regression)
  - Predict if available resources will be sufficient (classification)
- 2. Given SNR observed at a receiver
  - Predict if quality of transmission will be degraded (e.g., due to some occurring failure)
- 3. Other domains
  - Speech recognition
  - Spam classifier
  - House prices prediction/estimation



# Terminology – Regression

• Different terms for the same concepts

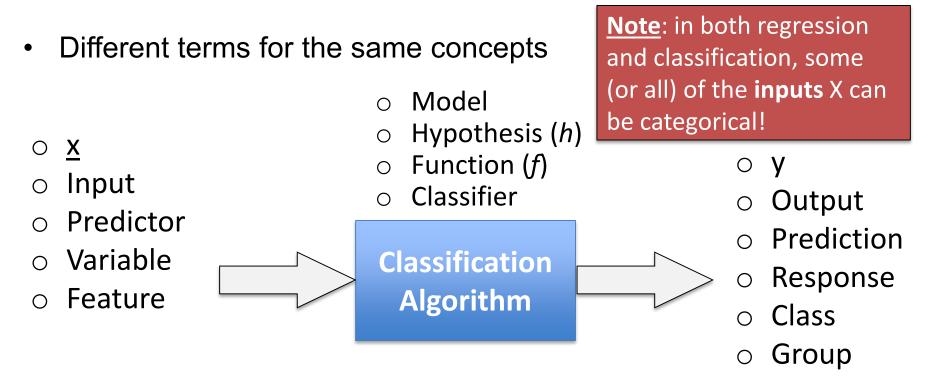


- Labeled data-set, where (<u>x</u>,y)-s are called:
  - observations
  - examples
  - samples

y is a real (continuous) value



# **Terminology – Classification**



- Labeled data-set, where (x,y)-s are called:
  - observations
  - examples
  - samples

y is a <u>discrete</u> value (or even "categorical")



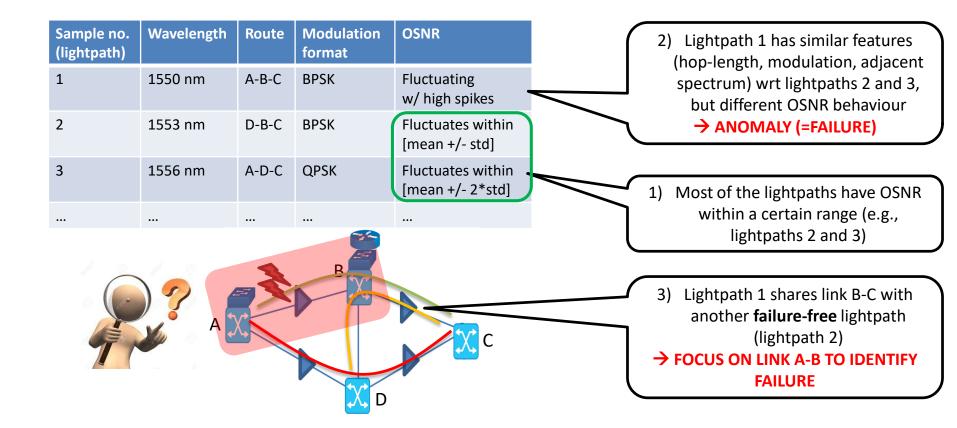
• Unsupervised learning: some examples



POLITECNICO MILANO 1863

### **Example in the optical network domain**

Unsupervised learning (anomaly detection): detect/localize failures in optical networks





POLITECNICO MILANO 1863

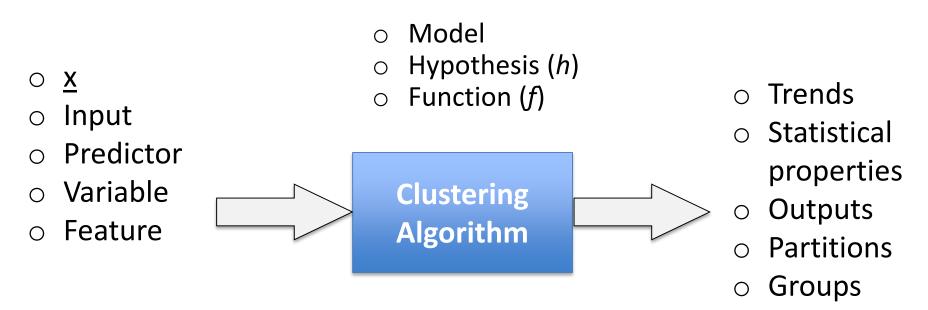
### **Unsupervised learning: other examples**

- 1. Given traffic profiles in different mobile cell sites
  - Understand if some cells provide similar behaviour (patterns)
    - They might cover same type of urban areas (theatre, cinema, stadium...)
    - $\circ~$  This information can be used to make network resources planning
- 2. Given failures in a certain radio link
  - Group similar failures to define new classes of problems (e.g., due to rain, due to large obstacles, hardware failures, etc.)
- 3. Other domains
  - Group people according to their interests to improve advertisement
  - Group together different genes if they provide similar information



# **Terminology – Clustering**

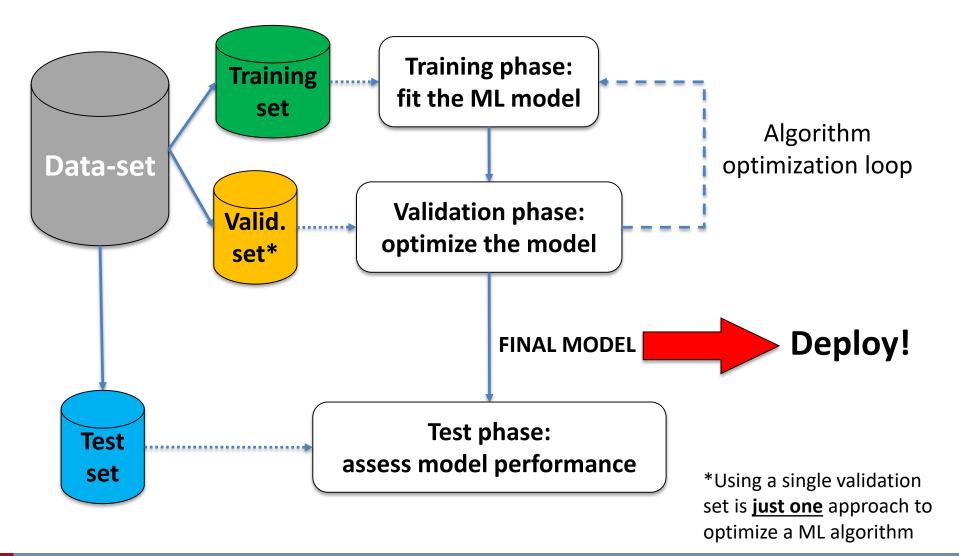
• Different terms for the same concepts



- **UN-labeled** data-set, only containing <u>x</u>-s, known as:
  - observations
  - examples
  - samples



### A «big picture» on a ML-based framework



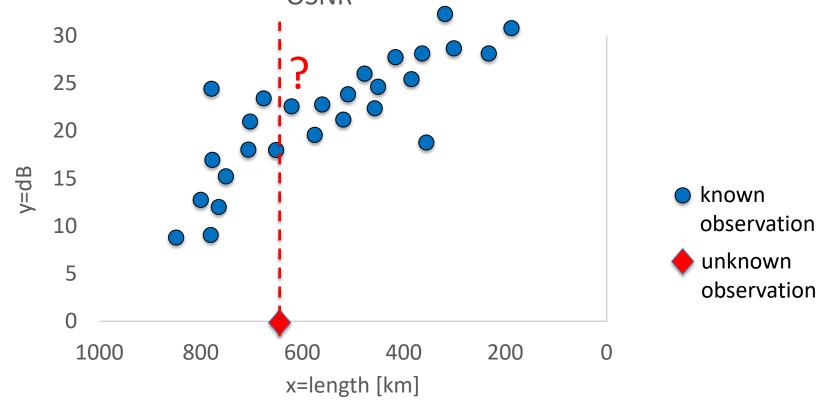


### Some basic concepts in ML

- Why do we want to estimate the behaviour y=f(x) ?
  - Prediction
    - we want to actually know the "exact" (as accurate as possible) value of y given a new input <u>x</u>
  - Inference
    - $\circ$  we want to understand how "in general" a certain quantity *y* behaves as <u>x</u> varies
    - which of the x in  $\underline{x}$  is the most relevant?
    - is the relation between any of the x-s and y linear or is it more complex?
- Trade-off: prediction accuracy vs model interpretability
  - Flexible (more complex) models have high prediction accuracy but low interpretability
  - Simple models (e.g., linear) have high interpretability but low accuracy



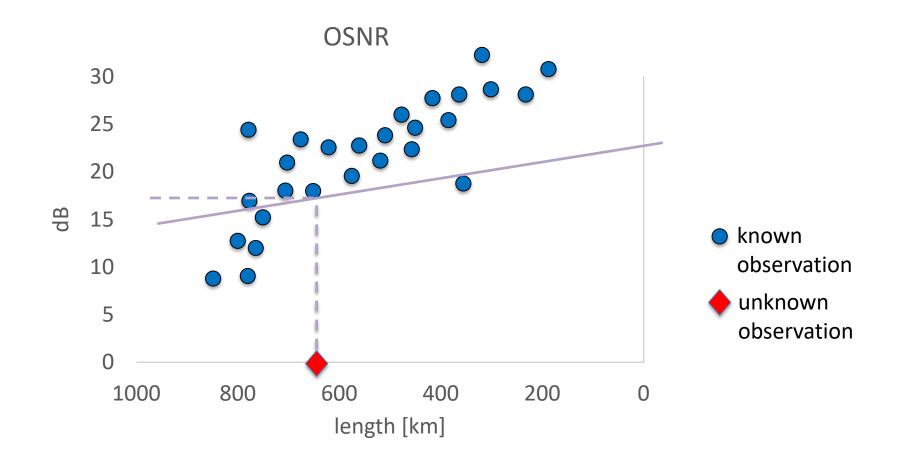
 Suppose we want to predict the OSNR (optical signal-tonoise ratio, i.e., "quality") given the length of a transmission system





POLITECNICO MILANO 1863

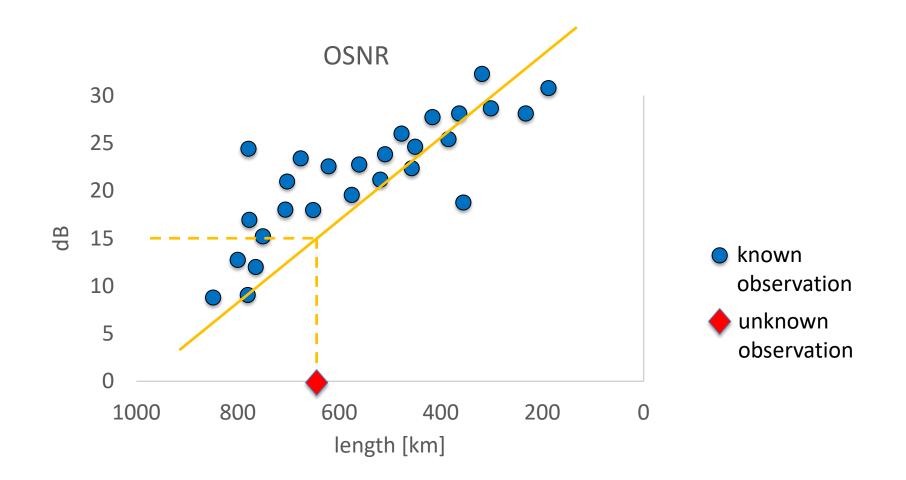
• Trend #1: 17 dB





**POLITECNICO** MILANO 1863

• Trend #2: 15 dB

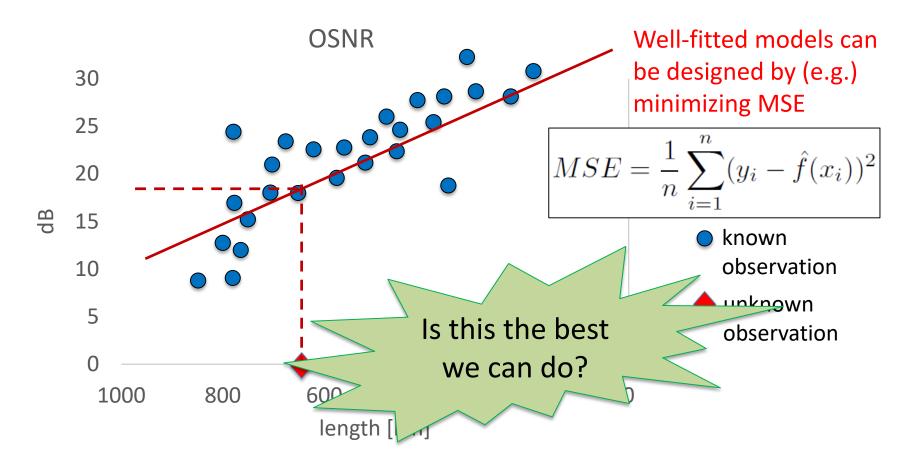




POLITECNICO MILANO 1863

• Trend #3: 18.5 dB

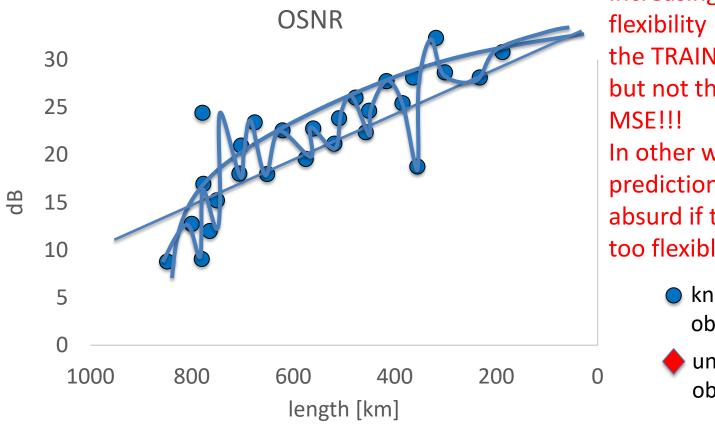
Which of the 3 predictions is correct (most appropriate)?





POLITECNICO MILANO 1863

- Suppose trend #3 is the best (lowest MSE) linear model
- Why linear?



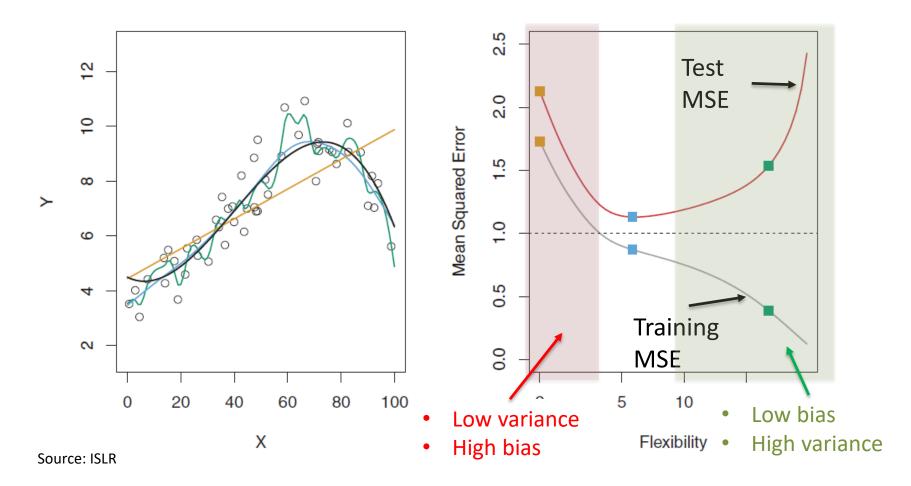
Increasing model flexibility lowers only the TRAINING MSE, but not the TEST MSE!!! In other words, future predictions can be absurd if the model is too flexible





# **Bias/variance trade-off (1)**

- Bias vs variance in regression problems
  - Increasing model flexibility (e.g., via higher-degree polinomials)

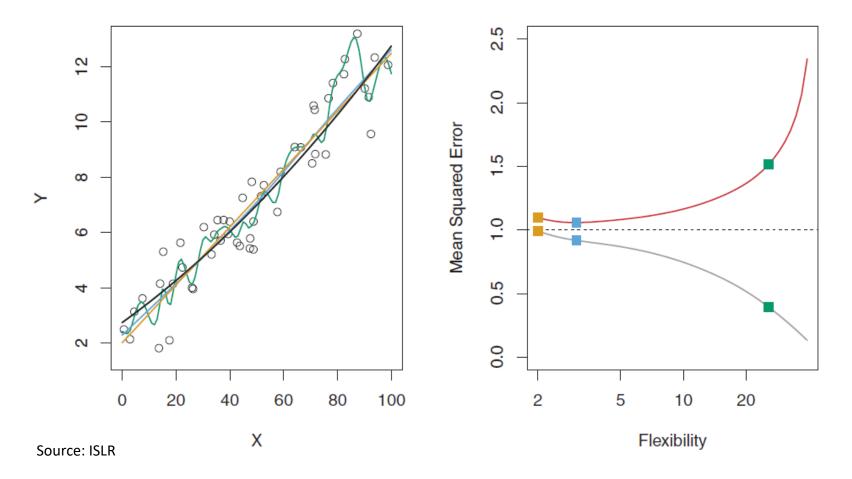




POLITECNICO MILANO 1863

### **Bias/variance trade-off (2)**

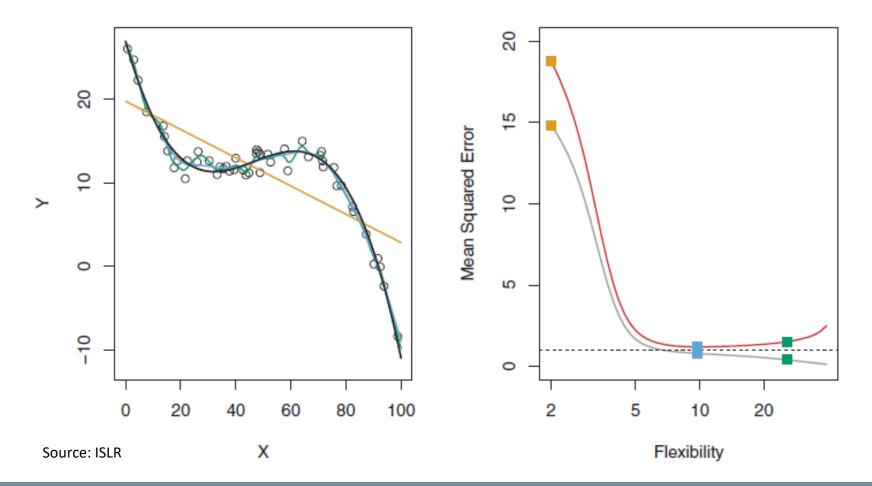
- Bias vs variance in regression problems
  - Increasing model flexibility (e.g., via higher-degree polinomials)





### **Bias/variance trade-off (3)**

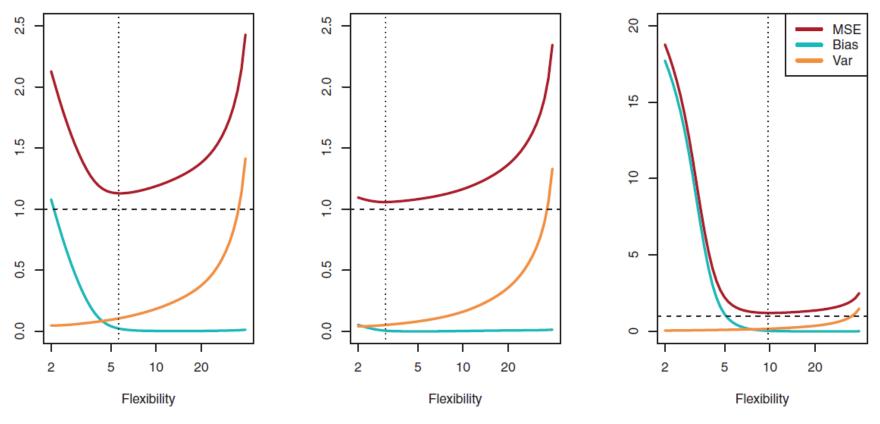
- Bias vs variance in regression problems
  - Increasing model flexibility (e.g., via higher-degree polinomials)





### **Bias/variance trade-off (4)**

- Bias vs variance in regression problems
  - Increasing model flexibility (e.g., via higher-degree polinomials)

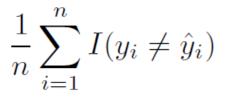


Source: ISLR

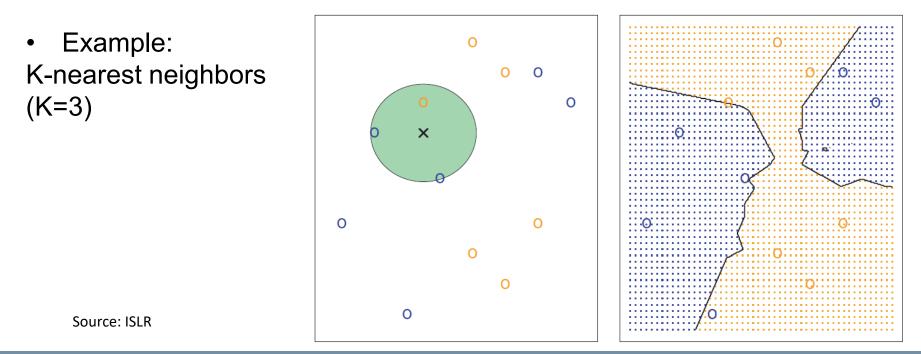


## **Bias/variance trade-off (5)**

- Bias vs variance in classification problems
- How can we measure the classification error?
  - MSE is not applicable
  - ERROR RATE: fraction of misclassified points:



I(condition)=1 if «condition» is true, =0 otherwise

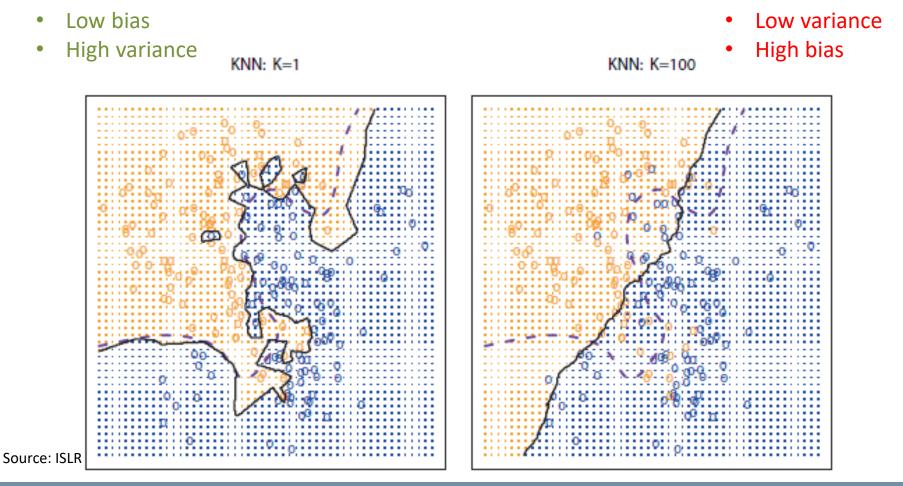




POLITECNICO MILANO 1863

## **Bias/variance trade-off (5)**

- Bias vs variance in classification problems
  - Varying the number of neighbors, K





POLITECNICO MILANO 1863

### **Bias/variance trade-off: summary**

- **Bias**: the error that is introduced by modeling a real life problem by a much simpler problem
- Variance: says how much the model would change if using a different training set
- Challenge: striking a "good" trade-off between bias and variance



POLITECNICO MILANO 1863

## The problem of data availability

- In real problems we do not always have large amount of real data
  - We need lots of monitors/sensors
  - Monitors can be expensive
  - Long periods of data collection are needed
  - Labeling data is costly/time-consuming
  - Real data may produce many «outliers»
- Alternative: synthetically generate your data
  - Define certain set of predictors X
  - Guess a hypothesis f(X) for the behavior of your data
  - Generate synthetic data by:

### $Y=f(X) + \varepsilon$

 $\circ~$  Random error  $\epsilon$  is with zero-mean and is independent from X



### Conclusion

- Some questions we want to answer at the end of the course
  - Which ML algorithm best describes our problem?
  - Which data should we consider to make predictions and/or decisions?
  - Is it worth collecting as much data as possible? Is there any irrelevant parameter we can (or should) neglect?
  - What is the performance of our learning algorithm?
  - And what is its complexity?

